
Reverse-Engineering the
Address Translation Caches

Philipp Ertmer, Robert Dumitru, and Yuval Yarom

Ruhr University Bochum
<first.last>@rub.de

Abstract. The address translation process and the responsible mem-
ory management unit (MMU) in modern CPUs have been the subject
of multiple recent microarchitectural side-channel attacks. A precondi-
tion to many of these attacks is familiarity with the intimate details of
the microarchitectural implementation of the process. However, because
vendors do not typically publish extensive information on this, attackers
must resort to reverse engineering techniques. Indeed, past works have
investigated such techniques, providing insights and novel understand-
ing on the implementation of components used in the address translation
process.
In this work, we improve this understanding. We extend the cache desyn-
chronization technique of Tatar et al., and apply it to the page trans-
lation caches, which store partial address translation information. We
develop automated tooling for investigating five generations of Intel pro-
cessors, ranging from Haswell to Alder Lake. Our investigations correct
mistakes in prior publications, identify a cache level that was missed so
far, and discover two hitherto unknown replacement policies. This new
understanding of address translation can increase attack precision and
facilitate better address-translation-based attacks.

1 Introduction

Microarchitectural side-channel attacks have emerged as a significant threat in
the field of cyber security. Such attacks have been demonstrated to leak cryp-
tographic keys [11, 12, 24, 34, 38], break address space layout randomization
(ASLR) [10, 13, 15, 17, 42], and even compromise entire systems [7, 19, 20,
29, 33, 39]. As many of these techniques exploit the CPU data and instruction
caches to infer sensitive information, many software- and hardware-based coun-
termeasures have been proposed to protect these components from side-channel
attacks [8, 14, 21, 31, 43]. In turn, several follow-up works have demonstrated
limitations in these countermeasures, because they fail to consider microarchi-
tectural components other than memory caches [3, 12, 25, 27, 34, 37, 41].

To stay ahead in this ongoing challenge, attackers and defenders need to
inform themselves about the underlying microarchitecture. One possibility is to
consult the official resources provided by CPU vendors [6, 18]. However, these
are often vague or incomplete due to their proprietary nature. Thus, researchers



often must resort to reverse engineering in order to recover the implementation
details of targeted components.

One of the components that has recently garnered attention is the memory
management unit (MMU), which is responsible for translating virtual memory
addresses to the corresponding physical memory addresses. Two notable works
in this direction are those of Gras et al. [12] and Tatar et al. [32], which reverse-
engineer the translation lookaside buffer (TLB), a cache implemented by the
MMU. Their insights enable attackers to bypass countermeasures against mi-
croarchitectural attacks [12, 34, 40] and efficiently execute attacks targeting the
MMU [32].

However, several other components that implement address translation in
modern CPUs have attracted much less attention. In particular, the MMU in-
cludes translation caches, which cache partial results of address translations.
While these play a critical role in the address translation process and for many
attacks targeting the MMU [13, 34, 42], their pertinent implementation details
are still largely undocumented. Van Schaik et al. [35] investigated these struc-
tures, but the information they provide is partial, and has not been corroborated
by independent studies. Understanding the exact structure and behavior of these
components is crucial for finding potential vulnerabilities as well as for imple-
menting effective defenses.

Contributions

In this work we close the gap and improve the overall understanding of the MMU.
We adapt the TLB desynchronization approach of Tatar et al. [32] and apply it
to reverse-engineer translation caches. We build an automated tool called Talbot,
for reverse engineering translation caches,1 which we use to evaluate six differ-
ent Intel microarchitectures. Talbot recovers multiple properties of translation
caches, including their size, hash function, replacement policy, and more.

Our adapted desynchronization approach allows us to reduce noise and pro-
duce more precise and consistent results than were previously possible. With
this increased precision, we correct some minor mistakes in the information pub-
lished in past works and identify that, contrary to past publications, the Skylake
microarchitecture does feature four levels of translation caches.

Additionally, our reverse-engineering effort identifies two unpublished re-
placement policies used on Intel processors. The first, which we term hit-updated
PLRU, is a variant of tree-based PLRU where the tree structure is only updated
on cache hits but not on cache misses. Consequently, entries that are not used
tend to be quickly replaced. The second, which we term most-recently hit, is a
variant of the most-recently used policy where the entry that experienced the
most recent hit is the first candidate for replacement.

In summary, this work makes the following contributions:
• We adapt TLB desynchronization for the purpose of reverse-engineering

translation caches (Section 3).

1 Talbot is open-source, available at https://github.com/0xADE1A1DE/Talbot

https://github.com/0xADE1A1DE/Talbot


Fig. 1: The page table walk performed by a MMU to translate virtual address
0xC8FA4B0C990000 to its corresponding physical page. The most-significant 9-
bit slice is used to index PTE number 200 in the fifth-level page table, which
points to the fourth-level page table. The next 9-bit slice is then used to index
entry 500 in the fourth-level page table, and so forth.

• We design and implement Talbot, an automated tool for investigating trans-
lation caches (Section 5).

• Using Talbot, we reverse-engineer the translation caches of six different In-
tel microarchitectures, identifying new structures and replacement policies
(Section 4).

2 Background

In this section, we provide background on address translation, cache-memory
desynchronization, and cache replacement policies.

2.1 Address Translation

Modern processors use memory virtualization to simplify and optimize system
memory management. This abstraction presents each process running on a ma-
chine with its own dedicated, contiguous blocks of virtual address space to op-
erate on. Such functionality is made possible by dynamic translation of virtual
addresses to physical addresses. The memory management unit (MMU) is the
dedicated hardware component responsible for managing these translations.

The high level translation process is generally well documented by CPU man-
ufacturers. Translation information is stored in main memory in the form of page
tables, which are structured as a multilevel directed tree. Each page table is in-
dexed by a specific portion of the virtual address. A page table entry (PTE)
points to either the next (lower) level page table or the requested physical page.



Fig. 2: Schema of the address translation process, showing the interaction of
translation caches and the page table hierarchy.

To translate an address, the MMU traverses these page table structures in
what is known as a page table walk. Figure 1 depicts a page table walk for a
system that uses five-level paging, as implemented in the x86_64 architecture.
First, the MMU finds the physical address of the root page table by reading the
CR3 register. The prefix of the virtual address is split into five 9-bit slices, which
index the page tables of successive lower levels. The MMU begins the page table
walk by using the most significant 9-bit slice to index the root (or fifth-level)
page table, selecting a PTE that points to the next lower-level page table. The
process continues iteratively until the page with the requested data is found.
The remaining address bits are used as an offset within that page.

2.2 MMU caches

Regularly performing multi-level page table walks that retrieve each entry from
physical memory can severely degrade system performance. To avoid this where
possible, CPUs cache recently resolved addresses in a dedicated structure called
TLB. That is, the TLB stores the PTEs of recently translated addresses, allowing
the MMU to avoid the page table walk for these addresses. While this avoids
most walks, TLB misses can still add significant overhead [6, 23].

To reduce the overhead of TLB misses, processors cache partial address trans-
lation information. One microarchitectural design for implementing this, and the
focus of this paper, is with translation caches [5], which store higher level PTEs
that match prefixes of recently resolved addresses. The MMU uses a prefix of the
virtual address to index these caches [18], allowing it to avoid the initial part of
the page table walk and resume the walk from the cached location. As depicted
in Figure 2, the MMU first looks up the virtual address in the TLB. In the case
of a hit, it uses the address to bypass the whole page table walk. Otherwise,
the MMU proceeds to progressively higher levels of translation caches, until a
match is found from where it then starts the page table walk. In practice, the
MMU typically queries the translation caches for all levels in parallel, and uses
the result of the most specific (lowest level) hit found.



Alternative designs for caching partial address translation information also
exist, in AMD Opteron processors for example, the page walk cache is a fully
associative cache which stores the PTE [6], indexed by its physical address.

2.3 Desynchronization

To reverse-engineer the TLB, Tatar et al. [32] use desynchronization, which is
an approach adapted from cache storage channels [16] for address translation.
The core idea of cache storage channels is to break cache coherency, creating a
scenario wherein a cached value differs from its corresponding memory contents.
Reading the desynchronized data then signals a cache hit or miss, depending
on whether the cached value or stored memory content is read. This provides a
mechanism to observe whether certain entries have been evicted from the TLB.

Persistent desynchronization is possible because the TLB does not enforce
memory coherency. Therefore, when Tatar et al. overwrite a PTE in one of the
first-level page tables stored in memory, the corresponding TLB entries are not
subsequently invalidated or changed. With this, they directly change the physical
address to which the virtual address translates to. If the desynchronized entry is
present in the TLB, translating an address using the corresponding PTE results
in its original physical address. However, if the entry has been evicted from the
TLB, the same virtual address translates to a different physical address. By
selecting physical addresses with different contents, TLB hits and TLB misses
can be distinguished.

2.4 Replacement policies

When placing new data into a full cache, the CPU selects which entry to replace
based on a given replacement policy. Ideally, the replacement policy chooses the
entry for eviction that will be used most distantly in the future [9]. Replacement
policies use past access behavior to take a best guess at this.

Permutation policies [1] are a popular class of replacement policies that main-
tain an eviction order for all of the blocks stored in a cache set. This order can be
represented using permutation vectors, where the right-most elements are cho-
sen for eviction first. A permutation vector πi indicates how each position in the
original order is updated upon an access to the entry at position i.

Pseudo least-recently used (PLRU) is a commonly used example of such a
permutation policy. PLRU aims to approximate the least-recently used (LRU)
policy, while reducing the amount of resources needed to track the least recently
used entry. In the frequently used tree-based PLRU policy, the entries are orga-
nized in a binary tree, where each node keeps track of which of its subtrees were
used least recently. Figure 3 depicts a tree-based PLRU and the corresponding
permutation vectors. As illustrated in the figure, the permutation vector π3[1]
is 0. This means that upon a hit to the entry at position 3 (d), the entry at
position 0 (b), is updated to position 1 (according to its index). Along with the
other positional updates and the other permutation vectors, this permutation
behavior defines the tree-based PLRU replacement policy.



Fig. 3: A sample state of the PLRU replacement policy and the identifying per-
muation vectors [32].

3 Strategy

We present our approach for reverse-engineering translation caches. We observe
that TLB desynchronization [32] operates on fundamental properties of caching
and can therefore reliably distinguish between cache hits and misses. We build on
the technique, applying it to translation caches implemented within Intel CPUs,
which we choose for their prevalence and dominance in the CPU market [2, 26,
30].

We first detail how to apply TLB desynchronization to translation caches,
and achieve translation cache desynchronization. We discuss optimizations that
we extend on previous approaches with to further reduce the noise of measuring
cache hits and misses in translation caches.

3.1 Translation Cache Desynchronization

The TLB desynchronization strategy of Tatar et al. [32] provides a means of
reverse-engineering the TLB. Unlike previous approaches based on timing, TLB
desynchronization operates on fundamental cache properties making it signifi-
cantly more precise and robust.

To apply desynchronization to translation caches we overwrite an intermediate-
level PTE in memory instead of a first-level, as would be done for TLBs. Address
translations that use the newly-desynchronized PTE consequently use a new
page table for the next-lower level which has been desynchronized. We prepare
this page table such that it provides mapping for the same address ranges as the
original one, but these mappings point to different physical addresses. Following
Tatar et al., we ensure that the content of the physical pages of the new mapping
differs from that of the original mapping. This allows us to differentiate between
a translation cache hit and a translation cache miss with a single read from the
address range:
• If the affected PTE is in the translation cache after desynchonization, trans-

lating an address that uses it accesses the original physical address.
• If this entry is evicted, translating the same virtual address results in a differ-

ent physical address (the one we overwrite with in desynchronization).



In order for these follow-up observations to reliably distinguish translation
cache hits and misses, we must ensure that the translation process (page table
walk) indeed reaches the target page table level. This will not occur in scenarios
where address translation is served from the TLB or from lower-level translation
caches, which we do not desynchronize. In such scenarios the page walk process
skips the target page translation level which we target, ignoring the desynchro-
nized translation cache.

3.2 Prefix Alignment

We now discuss how we can use a property that we call prefix alignment to
ensure that the address translation process always touches the PTE of interest.

Fig. 4: Page table layout for two virtual addresses, v and v′, that are prefix aligned
for down to the third-level page table, with separate second-level translation
cache and TLB entries.

Suppose we want to measure whether the third-level PTE of a virtual ad-
dress v is cached. Assume that the lower-level PTEs of v are present in either
the TLB or the second-level translation cache. After having desynchronized the
corresponding translation cache entry, we need to trigger a translation process
that touches the third-level PTE of v to measure a MMU cache hit or miss.



Simply re-translating the same address v is not an option, because the trans-
lation process will take the shortcut offered by the TLB or otherwise by the
second-level translation cache.

A naïve way to avoid this problem would be to evict the first- and second-
level PTEs from the TLB and second-level translation cache, respectively. While
this approach can work, it introduces system noise and increases the complexity
of the technique.

We opt for an alternative approach, which instead circumvents re-hitting the
TLB and PTEs at lower levels than our target. Instead of re-translating v, we
translate a prefix-aligned address v′ that shares all upper-level PTEs with v,
down to and including the third-level PTE. Figure 4 depicts the page tables
corresponding to two such example addresses. In order for the lower-level trans-
lation cache and TLB entries for v and v′ to not interfere with one another, the
second-level PTEs of v and v′ must differ. Hence, in a system with five-level
paging, the two virtual addresses v and v′ share the three top-most significant
9-bit slices, but are different in the following 9-bit slice, which is used to index
the second-level page table. Because the MMU selects a translation cache or
TLB entry based on the longest matching prefix of the translated address, the
MMU cannot use the lower-level translation cache and TLB entries of v when
translating v′. With this approach we force the subsequent page table walk to
include the target-level PTE and are able to check whether it is cached or not.

This method is applicable for any target-level PTE by ensuring the target-
and all upper-level PTEs are shared, and the next lower-level PTEs of two or
more addresses are different. Since page tables contain 512 PTEs, for each target
level we can construct up to 512 prefix-aligned addresses that have unique PTEs
on the next lower-level.

3.3 Limitations

As is the case in past work [35], desynchronization cannot differentiate between
translation cache hits and page walk cache hits. To the best of our knowledge,
Intel does not implement page walk caches. Earlier AMD processors did imple-
ment it [6], but AMD’s documentation is not clear about the current implemen-
tation [4].

4 Reverse Engineering

We reverse-engineer translation caches by using translation cache desynchroniza-
tion. We design and evaluate experiments to determine their behavior and im-
plementation details. We extend the approach of Tatar et al. [32] with additional
properties relevant to translation caches. With this we discern the existence of
certain cache structures, their hierarchy, and relationships.

All experiments focus on reverse engineering the named properties on a single
translation cache level at a time, but they are applicable to all levels.



Table 1: System configurations of our test environment.

Processor Alder Lake
i7-1260P

Rocket Lake
i7-11700KF

Kaby Lake
i5-7500

Skylake
i7-6700

Haswell
4415U

Hardware
Cores 4 / 81 8 4 4 2
Hyperthreading ✓/ ✗2 ✓ ✗ ✓ ✓
Memory size 32GB 64GB 16GB 32GB 4GB
Memory type DDR4 DDR4 DDR4 DDR4 DDR4

Software

OS Debian 12 Ubuntu
22.04.3 LTS

Arch Linux Debian 12 Ubuntu
22.04.4 LTS

Kernel version 6.1.0-22-
amd64

5.15.0-116-
generic

6.9.10-
arch1-1

6.1.0-18-
amd64

6.5.0-41-
generic

Architecture x86-64 x86-64 x86-64 x86-64 x86-64

1 Alder Lake implements four performance and eight efficiency cores.
2 Only performance cores support hyperthreading.

We experiment with five processor models, summarized in Table 1. On the
Alder Lake system we also differentiate between performance and efficiency
cores, often referred to as P-Cores and E-Cores. They differ in cycle frequency
and hyperthreading support and implement different microarchitectures. Thus,
our experiments cover six microarchitectures. We note that none of these systems
support five-level paging. In Table 2 we summarize all of our results.

4.1 Cache existence

We first verify the existence of translation caches at various target levels. Ac-
cording to the Intel developer manual, the MMU can implement any or all level
translation caches [18].

To confirm the existence of a translation cache at a given target level, we
trigger translation for an address. We then desynchronize the target level PTE
and finally access a prefix aligned address to check whether the address is cached.
If the target-level translation cache exists, reading from a prefix aligned address
still results in its original physical address. However, when the translation cache
does not exist, reading from the prefix aligned address results in a different phys-
ical address, as the MMU resorts to accessing the in-memory PTE to translate
the address.

Our experiments show that the MMU typically implements all levels of trans-
lation caches. If translation caches are omitted, this concerns the uppermost
levels.

4.2 Cache hierarchy

Our next aim is to find out whether the translation cache consists of multiple
layers, similar to the TLB or the CPU instruction and data caches. These typi-



cally implement multiple layers where the first layer is split between instructions
and data, whereas lower layers are shared between both.
Shared Layer. First, we determine whether the target translation cache im-
plements a shared layer. Using an instruction fetch, we trigger translation for a
target address and desynchronize its target-level PTE. Then, we use a data read
to trigger translation of a prefix aligned address. If read loads from the original
physical address associated to the prefix aligned address, the translation cache
implements a shared layer. Otherwise, we conclude that the translation cache
is split between data and instructions. We find that all translation caches im-
plement a shared layer, except for the second-level translation caches of Alder
Lake’s efficiency cores.
Split Layer. Additionally, we implement an experiment to determine the ex-
istence of a split layer. First, we bring a target PTE to the translation cache
using one access type and desynchronize it. Afterwards, we evict the related
translation cache entry from a potential shared layer by triggering many trans-
lations for different addresses using the other access type. Finally, we use the
original access type again, to trigger translation of a prefix aligned address. If
accessing this prefix aligned address still results in the originally associated data,
the translation cache must implement a split layer. If not, we conclude that the
translation cache does not implement a split layer. The experiment results indi-
cate that none of the microarchitectures we examine implement a split layer.

Our observations suggest that Alder Lake’s E-cores do not implement a
second-level translation cache, because it implements neither a shared nor a
split layer. However, this is a contradiction to the translation cache existing.
Analyzing the case, we conclude that the second level translation cache must
be implemented as a semi-split cache. That is, entries that are introduced by
one access type can be evicted using the other access type, but a cache entry
introduced by one access type cannot be used by the other access type.

4.3 Sets, ways, and hash functions

To reverse-engineer the number of sets and ways, as well as the hash function
implemented by translation caches, we first assume, without loss of generality,
that the target translation cache is split into S sets of W ways. We further assume
that the cache implements a hash function H : address → {0, 1, . . . , S − 1} that
maps a given address to a set. We guess multiple combinations of S, W , and H,
which are similar to results from past research.

We then use the guessed hash function H to generate multiple random groups
of W + 1 addresses whose target-level PTEs map to the same translation cache
set and use these to validate the guess. Specifically, we trigger an address trans-
lation for each of the addresses in the group, loading them to the respective
translation cache. We then desynchronize all of the translation cache entries of
these addresses. Finally, we attempt address translation again to detect if any



Table 2: Summary of the reverse-engineered properties of translation caches on
different Intel processors.

Property
Alder Lake

i7-1260P
(P-Cores)

Alder Lake
i7-1260P
(E-Cores)

Rocket Lake
i7-11700KF

Kaby Lake
i5-7500

Skylake
i7-6700

Haswell
4415U

Second-level translation cache
Exists ✓ ✓ ✓ ✓ ✓ ✓
Split Layer ✗ ✗ ✗ ✗ ✗ ✗
Shared Layer ✓ ✗ ✓ ✓ ✓ ✓
Sets 8 1 8 8 8 8
Ways 4 28–30 4 4 4 4
Hash function LIN»1 n/a1 LIN»1 LIN»1 LIN»1 LIN»1
Replacement policy PLRU LRU type HUPLRU HUPLRU HUPLRU HUPLRU
Nested ✗ ✗ ✗ ✗ ✗ ✗
Unified huge TLB ✗ ✗ ✗ ✗ ✗ ✗

Supported PCIDs 03 03 0 0 0 0
Third-level translation cache
Exists ✓ ✓ ✓ ✓ ✓ ✓
Split Layer ✗ ✗ ✗ ✗ ✗ ✗
Shared Layer ✓ ✓ ✓ ✓ ✓ ✓
Sets 1 1 1 1 1 1
Ways 3–4 12–14 3–4 2–4 4 1–3
Hash function n/a1 n/a1 n/a1 n/a1 n/a1 n/a1

Replacement policy PLRU LRU type PLRU (P)LRU PLRU (P)LRU
Nested ✗ ✗ ✗ ✗ ✗ ✗

Unified huge TLB ✗4 ✗ ✗4 ✗4 ✗ n/a5

Supported PCIDs 03 03 0 0 0 0
Fourth-level translation cache
Exists ✓ ✗ ✓ ✗ ✓ ✗
Split Layer ✗ - ✗ - ✗ -
Shared Layer ✓ - ✓ - ✓ -
Sets 1 - 1 - 1 -
Ways 2 - 2 - 1 -
Hash function n/a1 - n/a1 - n/a1 -
Replacement policy MRH - MRH - n/a2 -
Supported PCIDs 03 - 0 - 0 -

1 Defining a hash function is not useful when the cache is directly mapped.
2 Cannot explicitly define a replacement policy.
3 Cannot test PCID support with NOFLUSH bit set to one.
4 The huge TLB is not wiped by our eviction set.
5 The machine does not have enough free memory to execute the experiment.

address prefix was evicted from the translation cache, indicating contention on
a cache set. We then look for the combination of S, W , and H that minimizes
S and W , with priority to minimize W .

Table 2 summarizes the results. Based on the suspicion that the hash func-
tions are similar to those used for TLBs, we test the LIN and XOR hash func-
tions [12, 32]. However, we find that these are not implemented in translation
caches. Instead, we find that translation caches implement an undocumented
hash function, which we call LIN»1 hash.

To calculate the target set t of a virtual address VA, LIN»1 computes t =
(tagVA >> 1) mod S. Thus, the translation cache index tagVA of VA is shifted
one bit to the right, essentially ignoring the least significant bit of the cache



index on set selection. Hence, pairs of adjacent PTEs in a page table map to the
same translation cache set.

4.4 Replacement policy

To reverse-engineer the replacement policy of a target translation cache set, we
follow the approach of Abel and Reineke [1]. We use knowledge of the number of
ways W and the hash function H attained in our prior experiments to establish
a known state in a target set s. We can achieve this by triggering translation
for W addresses that, according to H, are known to map to s. Then, we need
to determine the replacement order of the known state. We repeat the following
steps for all i ∈ {1, . . . ,W − 1}:

1. desynchronize all entries contained in the target translation cache set
2. trigger translation for i independent addresses which also map to s

3. iteratively observe which entry is evicted by the i-th access
The position of the evicted entry in the replacement order corresponds to W − i.
Afterwards, we can determine the permutation vectors with the following steps:

1. establish a known state with a known order
2. touch one of the PTEs in the target set to trigger a permutation
3. repeat the process presented before to determine the replacement order

of the entries
Repeating this process for all possible W permutations, we obtain the permuta-
tion vectors that define the target set’s replacement policy.

The results of this experiment are displayed in Table 2. On most examined
platforms the algorithm cannot determine the permutation vectors. It only works
for the second-level translation cache of Alder Lake’s performance cores and for
most of the third-level translation caches, except those of Alder Lake’s efficiency
cores. From manual analysis of more complex access patterns we find that these
translation caches do not implement permutation policies. We identify two novel
replacement policies, which we present in the following two sections.
HUPLRU. Hit-updated PLRU (HUPLRU) is the first replacement policy we
discover and it is implemented on most second-level translation caches. Just like
tree-based PLRU, it implements a binary tree to keep track of the recency of the
entries in the cache. Each node in the tree serves as a decision point, pointing
in the direction of the least recently used entry. In PLRU, each node in the tree
is updated upon hitting an existing or inserting a new entry to point in the
opposite direction of that entry. For HUPLRU this is different. The tree is only
updated upon hitting an existing entry, but not upon inserting a new one.

We hypothesize that Intel has chosen to implement this variation of PLRU as
an optimization strategy to prevent cache pollution. HUPLRU ensures that one-
hit wonders do not pollute the cache, as a second-level PTE must be accessed
at least twice to be retained. Such PTEs have high reuse probability because it
indicates that memory is being iterated and more hits are to follow. Accessing
a second-level PTE only once suggests a 2 MiB jump in the virtual addresses



utilized. These are rare due to the principal of spatial locality and should not be
retained in the cache.
MRH. On the fourth level translation caches of Rocket Lake and Alder Lake’s
P-cores, we identify another novel replacement policy, which we call most-recently
hit (MRH). This is a variant of the more common most-recently used (MRU)
replacement policy. As the name suggests, MRU chooses the most-recently used
entry for eviction. The most-recently used entry is either the one that was most-
recently inserted, or the one that was most-recently hit. For MRH, this is differ-
ent: only the most-recently hit entry can be chosen for eviction. Inserting a new
entry does not change the order of replacement.

In general, it seems counterintuitive to replace the entries that were just
recently used. However, in our specific case this strategy aligns with observed
translation cache behavior and access likelihoods. The third-level PTEs map
memory regions of 1GiB. In Section 4.5, we discover that regardless of fourth-
level translation cache evictions, the corresponding third-level translation cache
entries are retained. Hence, even after a fourth-level eviction, the third-level
cache ensures that an access to the same region incurs minimal additional cost.
Furthermore, we suspect that Intel chooses MRH over MRU because it is less
prone to pollution through unused entries, which otherwise would never leave
the cache.

4.5 Nesting

Next, we examine the relationships between the different levels. To this end, we
introduce the notion of nesting. We say that translation caches are nested when
it is guaranteed that all indices of entries present in a lower-level translation
cache are prefixed by an index of an entry present in the next upper-level.

To investigate nesting, we trigger translation for a target address and desyn-
chronize its target level PTE. Then we try to evict a higher-level translation
cache entry associated with the target address. Finally, we read from a prefix
aligned address, sharing the target level PTE of our target address. Measuring
a cache miss indicates nesting, whereas a cache hit indicates that there is no
such relationship between the different level translation caches. Our evaluation
demonstrates that the translation caches we investigate are not nested.

4.6 Huge TLBs

In addition to the normal TLB that stores translations of 4 KiB pages, the MMU
implements additional TLBs for 2 MiB and 1 GiB huge pages, which we call
huge TLBs. These TLBs cache PTEs of the second- and third-level page tables
mapping the corresponding huge pages. We now check whether these TLBs are
unified with their corresponding translation caches [35].

To this end, we introduce a target PTE to the target level translation cache
and desynchronize it. We then evict all entries from the 2 MiB or 1GiB huge



Fig. 5: TLB sizes and layout reported by cpuid for all test systems, except Alder
Lake and Rocket Lake.

TLB, depending on whether we are investigating the second- or third-level trans-
lation cache respectively. Finally, we trigger translation for a prefix aligned ad-
dress, sharing the target PTE. If this translation indicates a translation cache
miss, it confirms that huge TLBs and translation caches are unified.

We find that translation caches and huge TLBs are not unified. Considering
our refined findings for the structure of translation caches, this is not too sur-
prising. While the 2 MiB and 1 GiB dTLB’s structure aligns to some degree with
the structure of the second- and third-level translation caches, we already found
that translation caches are shared between instructions and data. Hence, the
only conceivable relation is to have them unified with the huge sTLBs. However,
as we can see in Figure 5, their structure does not really align with the structure
we have observed for translation caches.

4.7 PCID support

Finally, we investigate how translation caches enforce process isolation. Intel
CPUs manage this using process context identifiers (PCIDs). Tatar et al. [32]
observe that the TLB supports only four of the 4096 possible PCIDs simulta-
neously. As soon as an additional PCID is used, the MMU invalidates all TLB
entries related to the least-recently used PCID. They conclude that the MMU
implements a PCID cache with four entries, and that the TLB entries also store
an identifier relating them to one of the entries in that cache.

We investigate whether translation caches operate according to a similar
principle. To switch PCIDs, we write to the CR3 control register. According
to the Intel developer manual [18], setting bit 63 of the CR3 register hints the
processor to not flush the translation caches when switching PCIDs. However,
we find that whether or not we set bit 63, translation caches do not support
PCIDs and are always flushed upon context switches.



If this were not the case, the number of supported PCIDs could be discerned
with the following experimental procedure. First, trigger translation for a target
address from a fixed PCID. Next, desynchronize its target level PTE and then
switch to n + 1 different PCIDs. Finally, switch back to the fixed PCID and
trigger translation for a prefix aligned address. The lowest value of n, for which
this translation still indicates a cache miss, is exactly equal to the maximum
amount of supported PCIDs.

4.8 Cross-hyperthread PCID support

One remaining question that subsequently arises is how process isolation is en-
forced between different hyperthreads running on the same core. As translation
caches are implemented per core, and they do not make use of PCIDs, process
isolation needs to be enforced in a different way.

To investigate this, we first introduce a new entry to the target translation
cache and desynchronize it. Afterwards, we switch to the co-resident hyper-
thread, and switch to a different PCID from there. Then, in the original hyper-
thread, we trigger translation of a prefix aligned address, in order to determine
whether our target entry is still present in the translation cache. A translation
cache hit indicates that process isolation is properly enforced, because the PCID
switch only invalidates the translation cache entries related to one hyperthread.

Our experiments show, that all translation caches do implement proper pro-
cess isolation between hyperthreads. We assume that they make use of the hy-
perthread ID to relate entries to their corresponding hyperthreads [32], though
a different design is conceivable. We leave it to future work to further investigate
upon this. The behavior is quite interesting, because the processor needs to find
and invalidate the specific entries related to the current hyperthread upon every
context-switch.

4.9 Discussion

In this section, we discuss our reverse engineering results. In particular, we com-
pare our results to the previously observed properties of translation caches by
van Schaik et al. [35].
Previous results. Two of the microarchitectures we examine, Haswell and
Skylake, were also examined by van Schaik et al. [35]. The Skylake models ex-
amined are identical, but the Haswell models differ. We use the Intel Pentium
4415U, whereas they examine the Intel Core i7-4500U.

On both microarchitectures, we find different sizes for the second-level trans-
lation caches. Van Schaik et al. observe that each of these consists of 24 entries.
However, with our experiment to determine the hash function, we instead observe
that they consist of 32 entries in total. Additionally, contrary to van Schaik et al.,
we find that Skylake implements a fourth-level translation cache, and Haswell’s
third-level translation cache consists of only 1–3 entries instead of 3–4.

There are several explanations for these different findings. First, van Schaik
et al. [35] rely on timing measurements to differentiate between translation



cache hits and misses. Desynchronization differentiates translation cache hits and
misses based on fundamental properties of the address translation process [32].
Because of this, desynchronization offers far more robust classification than tim-
ing measurements, which are susceptible to noise [32].

Amplifying this, van Schaik et al. have to consistently evict the PTEs from
the CPU data caches, the TLB, and lower-level translation caches. Desynchro-
nization does not require such techniques, as the CPU data caches do not in-
terfere with desynchronization, and must run in kernel mode, allowing us to
easily flush the MMU caches. Additionally, in Section 3.2, we propose prefix
alignment, which allows us to touch a target-level PTE without flushing the
lower-level MMU caches at all.

Furthermore, as we discover in Section 4.4, translation caches may implement
complex replacement policies. As we cannot find any hints that van Schaik et
al. [35] consider that, this might be another explanation for the differing results.

5 Talbot

We present Talbot, a tool that automates the processes for reverse engineering
translation caches in Intel processors. Talbot implements all of the experiments
we describe in Section 4. In this section, we discuss implementation challenges
and limitations, and we evaluate the tool.

5.1 Challenges

Several non-trivial technical challenges arise in the effort of automating various
reverse engineering processes.

Out-of-order execution, along with scheduled and asynchronous events, com-
plicate running our experiments as they introduce interference and system noise.
Where possible we mitigate these effects, for example by implementing strict
pointer chasing for the relevant memory accesses, and disabling preemption and
interrupts.

Additionally, due to the large memory areas mapped by upper-level page
tables, we also have to optimize the required memory. We make use of overlap-
ping memory areas and page table entries to implement memory management.
Finally, we encounter some trouble with flushing the translation caches in be-
tween experiments, making the experiment results very unstable. We suspect
that this is related to the replacement policy state that the translation cache is
left in after flushing. This results in certain entries being evicted early, before the
corresponding cache set is completely filled. Consulting with the Intel developer
manual [18], we find that using mov intructions targeting the CR3 register is the
most stable approach across our different test platforms.



5.2 Limitations

Talbot only supports four-level paging because none of the machines we tested
feature five-level paging. We leave extending the tool for five-level paging to
future work.

The set of hypothesized hash functions that Talbot supports is limited to
LIN, XOR, and LIN»1. When Talbot cannot attribute any of these hash func-
tions as the tested system’s correct candidate, it produces minimal eviction sets,
using the single holdout method [22, 28]. Similarly, Talbot only provides the
permutation vectors when reverse engineering the replacement policy. Manual
work is required to draw conclusions about the implemented policy. Analysts
running the tool must have some understanding of the experiments it performs.
All experiments are run, regardless of whether the translation cache exists or not.
Furthermore, Talbot even prints out a hash function, if the translation cache is
directly mapped.

All of the experiments our tool implements do not account for multi-layer
caches. We did not encounter any test platforms that implement a multi-layer
hierarchy. Regarding replacement policies, in its current state Talbot is limited
to reverse-engineering permutation-based policies.

5.3 Evaluation

For our experiments, Talbot is particularly effective in identifying cache exis-
tence, hierarchies, and hash functions. Across multiple processor architectures,
it reliably detects different architectures with high accuracy, though sometimes
there is a need to run the tool multiple times and average the results. Talbot
also consistently identifies features such as PCID support, nesting, and the rela-
tionship to huge TLBs. However, our test environment does not challenge these
experiments, as these properties are consistent across the different microarchi-
tectures tested.

Despite this, Talbot also has shortcomings, mostly related to the limitations
we mentioned. Most prominently, the automated reverse engineering of replace-
ment policies is not completely reliable. This is because the assumption that
translation caches implement permutation policies rarely holds. Future work
may try to adapt the approach of Vila et al. [36] for reverse-engineering replace-
ment policies to the case of translation caches. As a more limited solution, we
provide scripts that identify the HUPLRU and MRH replacement policies on the
affected systems.

In summary, Talbot offers a robust means of quickly reverse engineering
translation caches, with careful and knowledgeable interpretation of its results.
The tool is a basis that can be further developed for reverse engineering diverse
replacement policies and its inter-experiment relationships.

6 Conclusion

In this work, we adopt the TLB desynchronization strategy [32] to obtain trans-
lation cache desynchronization and reverse-engineer translation caches. We ob-



tain a refined description of the implementation details and largely extend the
understanding of translation caches, opposed to previous reverse-engineering ef-
forts. We go beyond the sizes of translation caches, and investigate more specific
implementation details, including cache structure, replacement policy, process
isolation capability, and relationships.

Our results show that the potential of attacks utilizing the address translation
process, and especially translation caches, is not fully utilized yet. Future work
can build upon the properties we expose and construct novel attacks or improve
the performance of existing attacks.

Additionally, we implement Talbot, a tool to automatically reverse-engineer
specific properties of translation caches on arbitrary Intel processors. Future
work can use Talbot to evaluate the implementation of translation caches on
other existing and future microarchitectures. Enhancing the tool’s reverse en-
gineering capabilities would be especially useful, in particular concerning more
complex replacement policies.

Acknowledgments

This work was supported by an ARC Discovery Project number DP210102670;
and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

The Accepted Manuscript acknowledgment2 is dictated by the publisher and
does not necessarily reflect the views of the authors.

References

1. Andreas Abel and Jan Reineke: Measurement-Based Modeling of the Cache Re-
placement Policy. In: RTAS, pp. 65–74 (2013)

2. Paul Alcorn: AMD and Intel CPU Market Share Report: Recovery on the Horizon,
(2023). https://www.tomshardware.com/news/amd-and-intel-cpu-market-sha
re-report-recovery-looms-on-the-horizon

3. Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri: Port Contention for Fun and Profit. In: IEEE SP,
pp. 870–887 (2019)

4. AMD: AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, (2024)

5. Thomas W. Barr, Alan L. Cox, and Scott Rixner: Translation Caching: Skip, Don’t
Walk (the Page Table). In: ISCA, pp. 48–59 (2010)

2 This version of the contribution has been accepted for publication, after peer re-
view (when applicable) but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available
online at http://dx.doi.org/[insert DOI]. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use https://www.springernature.c
om/gp/open-science/policies/accepted-manuscript-terms.

https://www.tomshardware.com/news/amd-and-intel-cpu-market-share-report-recovery-looms-on-the-horizon
https://www.tomshardware.com/news/amd-and-intel-cpu-market-share-report-recovery-looms-on-the-horizon
https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-science/policies/accepted-manuscript-terms


6. Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne: Ac-
celerating Two-Dimensional Page Walks for Virtualized Systems. In: ASPLOS,
pp. 26–35 (2008)

7. Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida: Dedup Est
Machina: Memory Deduplication as an Advanced Exploitation Vector. In: IEEE
SP, pp. 987–1004 (2016)

8. Benjamin A. Braun, Suman Jana, and Dan Boneh: Robust and Efficient Elimina-
tion of Cache and Timing Side Channels, arXiv:1506.00189. (2015)

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein:
Introduction to Algorithms, Fourth Edition. MIT Press (2022)

10. Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh: Jump over ASLR:
Attacking Branch Predictors to Bypass ASLR. In: MICRO, pp. 1–13 (2016)

11. Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser: A Survey of Microarchitec-
tural Timing Attacks and Countermeasures on Contemporary Hardware. Journal
of Cryptographic Engineering 8(1), 1–27 (2018)

12. Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida: Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks. In:
USENIX Security, pp. 955–972 (2018)

13. Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida:
ASLR on the Line: Practical Cache Attacks on the MMU. In: NDSS (2017)

14. Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa: Strong and Efficient Cache Side-Channel Protection Using Hard-
ware Transactional Memory. In: USENIX Security, pp. 217–233 (2017)

15. Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard: Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In: CCS,
pp. 368–379 (2016)

16. Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam: Cache
Storage Channels: Alias-Driven Attacks and Verified Countermeasures. In: IEEE
SP, pp. 38–55 (2016)

17. Ralf Hund, Carsten Willems, and Thorsten Holz: Practical Timing Side Channel
Attacks against Kernel Space ASLR. In: IEEE SP, pp. 191–205 (2013)

18. Intel Inc.: Intel 64 and IA-32 Architectures Software Developer Manuals,
19. Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,

Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom: Spectre Attacks: Exploiting Speculative Execution. In: IEEE SP,
pp. 1–19 (2019)

20. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg: Meltdown: Reading Kernel Memory from User Space.
In: USENIX Security, pp. 973–990 (2018)

21. Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee: CATalyst: Defeating Last-Level Cache Side Channel Attacks in
Cloud Computing. In: HPCA, pp. 406–418 (2016)

22. Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee: Last-Level
Cache Side-Channel Attacks Are Practical. In: IEEE SP, pp. 605–622 (2015)

23. Collin McCurdy, Alan L. Cox, and Jeffrey S. Vetter: Investigating the TLB Behav-
ior of High-end Scientific Applications on Commodity Microprocessors. In: ISPASS,
pp. 95–104 (2008)

24. Dag Arne Osvik, Adi Shamir, and Eran Tromer: Cache Attacks and Countermea-
sures: The Case of AES. In: CT-RSA, pp. 1–20 (2006)



25. Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher: Lord of the
Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are Prac-
tical. In: USENIX Security, pp. 645–662 (2021)

26. PassMark Software: PassMark CPU Benchmarks - AMD vs Intel Market Share,
(2024). https://www.cpubenchmark.net/market_share.html

27. Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard: DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In: USENIX
Security, pp. 565–581 (2016)

28. Moinuddin K. Qureshi: New attacks and defense for encrypted-address cache. In:
ISCA, pp. 360–371 (2019)

29. Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Her-
bert Bos: Flip Feng Shui:Hammering a Needle in the Software Stack. In: USENIX
Security, pp. 1–18 (2016)

30. Anton Shilov: Arm-Based CPUs Could Double Notebook PC Market Share by
2027, (2023). https://www.tomshardware.com/news/arm-based-cpus-set-to-d
ouble-notebook-pc-market-share-by-2027

31. Read Sprabery, Konstantin Evchenko, Abhilash Raj, Rakesh B. Bobba, Sibin Mo-
han, and Roy H. Campbell: A Novel Scheduling Framework Leveraging Hardware
Cache Partitioning for Cache-Side-Channel Elimination in Clouds, arXiv:1708.09538.
(2017)

32. Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos: TLB;DR: En-
hancing TLB-based Attacks with TLB Desynchronized Reverse Engineering. In:
USENIX Security, pp. 989–1007 (2022)

33. Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss, Clemen-
tine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cristiano Giuf-
frida: Drammer: Deterministic Rowhammer Attacks on Mobile Platforms. In: CCS,
pp. 1675–1689 (2016)

34. Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi: Malicious
Management Unit: Why Stopping Cache Attacks in Software Is Harder Than You
Think. In: USENIX Security, pp. 937–954 (2018)

35. Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cristiano Giuf-
frida: RevAnC: A Framework for Reverse Engineering Hardware Page Table Caches.
In: EuroSec, pp. 1–6 (2017)

36. Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf: CacheQuery: Learning
Replacement Policies from Hardware Caches. In: PLDI, pp. 519–532 (2020)

37. Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham, Christo-
pher W. Fletcher, and David Kohlbrenner: Hertzbleed: Turning Power Side-Channel
Attacks Into Remote Timing Attacks on x86. In: USENIX Security, pp. 679–697
(2022)

38. Yuval Yarom and Katrina Falkner: Flush+Reload: A High Resolution, Low Noise,
L3 Cache Side-ChannelAttack. In: USENIX Security, pp. 719–732 (2014)

39. Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom: PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit
Accesses. In: MICRO, pp. 28–41 (2020)

40. Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom: PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit
Accesses. In: MICRO, pp. 28–41 (2020)

41. Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup, Daniel
Genkin, and Yuval Yarom: BunnyHop: Exploiting the Instruction Prefetcher. In:
USENIX Security, pp. 7321–7337 (2023)

https://www.cpubenchmark.net/market_share.html
https://www.tomshardware.com/news/arm-based-cpus-set-to-double-notebook-pc-market-share-by-2027
https://www.tomshardware.com/news/arm-based-cpus-set-to-double-notebook-pc-market-share-by-2027


42. Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, and Josep Torrellas:
Binoculars: Contention-Based Side-Channel Attacks Exploiting the Page Walker.
In: USENIX Security, pp. 699–716 (2022)

43. Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang: A Software Approach to
Defeating Side Channels in Last-Level Caches. In: CCS, pp. 871–882 (2016)


	Reverse-Engineering the Address Translation Caches

