
On Borrowed Time – Preventing Static Power Side-Channel Analysis

Robert Dumitru
The University of Adelaide &

Defence Science and Technology Group
robert.dumitru@adelaide.edu.au

Andrew Wabnitz
Defence Science and Technology Group

andrew.wabnitz1@defence.gov.au

Yuval Yarom§

Ruhr University Bochum
yuval.yarom@rub.de

Abstract—In recent years, static power side-channel analysis
attacks have emerged as a serious threat to cryptographic
implementations, overcoming state-of-the-art countermeasures
against side-channel attacks. The continued down-scaling of
semiconductor process technology, which results in an increase
of the relative weight of static power in the total power budget
of circuits, will only improve the viability of static power side-
channel analysis attacks. Yet, despite the threat posed, limited
work has been invested into mitigating this class of attack.

In this work we address this gap. We observe that static
power side-channel analysis relies on stopping the target cir-
cuit’s clock over a prolonged period, during which the circuit
holds secret information in its registers. We propose Borrowed
Time, a countermeasure that hinders an attacker’s ability to
leverage such clock control. Borrowed Time detects a stopped
clock and triggers a reset that wipes any registers containing
sensitive intermediates, whose leakages would otherwise be
exploitable.

We demonstrate the effectiveness of our countermeasure
by performing practical Correlation Power Analysis attacks
under optimal conditions against an AES implementation on an
FPGA target with and without our countermeasure in place. In
the unprotected case, we can recover the entire secret key using
traces from 1,500 encryptions. Under the same conditions, the
protected implementation successfully prevents key recovery
even with traces from 1,000,000 encryptions.

1. Introduction

The seminal work of Kocher [29] demonstrated that
implementations of mathematically secure cryptographic
primitives can be vulnerable to attack via side-channel
analysis exploiting the leakage of sensitive information
through physical properties of the implementation. Since
then multiple side channels have been demonstrated, ex-
ploiting various effects, such as timing [9, 12], power con-
sumption [28, 35], electromagnetic emanations [17, 51],
shared micro-architectural components [18, 58], and even
acoustic [19] and photonic emanations [32, 53]. Among the
purely physical sources of side-channel leakage, exploita-
tion of power consumption, known as power analysis, has
received the most attention from the security community.

§. Work partially done while affiliated with The University of Adelaide.

Research on power analysis has historically focused on
attacks exploiting the instantaneous power consumed while
performing computations, also known as dynamic power
analysis. However, with the continued down-scaling of
Complementary Metal-Oxide-Semiconductor (CMOS) tech-
nology the relative weight of static power, used for main-
taining the logical state of a circuit, has increased as part
of the total power budget, and with it some attention has
more recently shifted to static power side-channel analy-
sis [4, 8, 27, 38, 39, 41, 42, 43, 50].

In a typical static power side-channel analysis attack,
the attacker freezes the state of the target device when
it is known to contain secret data in some of its state
registers. The attacker then waits for some time to allow the
dynamic effects of prior computation to subside, before mea-
suring the power consumption of the device. The attacker
typically performs a large number of measurements (e.g.
100k samples [41]) over a measurement period. Averag-
ing these measurements significantly reduces measurement
noise, allowing high measurement accuracy. Alternatively,
the attacker can use measurement devices that provide high
precision [4, 40], but we note that those devices have a very
low sampling rate (1kS/s), hence measurements still take a
relatively long time.

Since the first practical demonstration of static power
side-channel analysis attacks in 2014 [43], research in the
area has demonstrated attacks on various cryptographic
primitives [4, 41], investigation of the factors that affect
the attack [42], and improvements to attack techniques [4,
38, 41, 42]. In particular, past work has demonstrated that
static power side-channel analysis is an effective attack even
against targets that implement countermeasures which hin-
der dynamic power analysis attacks [2, 3, 38, 41]. However,
little research has been invested toward designing counter-
measures against static power side-channel analysis despite
the emergence of a clear need for dedicated solutions. In
this work we set out to fill this gap and design an effective
countermeasure for this class of attack.

Our Contribution

We first observe that all published static power side-
channel analysis attacks require a relatively long period,
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spanning at least several hundreds of typical clock cycle
periods, in which two conditions hold:

1) The clock signal supplied to the target device is
stopped; and

2) Registers contain and thereby leak sensitive data.
The core idea behind our countermeasure, called Borrowed
Time, is to prevent situations in which both conditions
hold. Specifically, Borrowed Time continuously monitors
the clock to ensure that it keeps ticking. If Borrowed Time
detects that the clock is stopped for too long, it resets the
contents of registers that may contain sensitive data, setting
their contents to a fixed, non-secret value.

We propose two approaches for implementing the clock-
monitor part of Borrowed Time. One uses clock manage-
ment circuitry found in conventional digital systems which
imposes minimal design overhead, and the other uses a
custom asynchronous circuit module that lends itself well to
lightweight designs that employ clock-gating. Both designs
can be implemented on either FPGA or ASIC devices.

The first approach uses a Phase-Locked Loop (PLL), a
component commonly used for clock management in digital
systems. In a nutshell, a PLL uses a feedback loop to
ensure that an output clock (or clocks), which it distributes
across the circuit, remains synchronised with an input clock,
typically provided by an external source such as a crystal
oscillator or another circuit. Stopping the input clock breaks
the synchronisation between it and the output clock, allow-
ing the PLL to rapidly detect such an incident.

While PLLs are effective at detecting a stopped clock,
they do have two main limitations. First, PLLs are rel-
atively large and may, therefore, be expensive for some
uses. Second, because PLLs take a long time to synchronise
the output and input clocks, they are unsuitable in some
cases. One such example is within clock-gated circuits,
where a master circuit dynamically disables the clock signal
provided to some circuit components in order to reduce
power consumption when these components are not active.
To accommodate for cases where PLLs may not be suitable,
we propose an alternative design based on an asynchronous
system that samples the clock signal at multiple points in
time and monitors its natural variation. Where this variation
is absent and the clock value is the same across all sampled
points in time, the design indicates a stopped clock.

To test the effectiveness of Borrowed Time, we perform
practical static power side-channel analysis attacks with and
without the countermeasure in place. We first implement
an unprotected AES circuit on a Field-Programmable Gate
Array (FPGA) and perform an end-to-end static power side-
channel analysis attack on it to recover the secret key.
Unprotected implementations exhibit strong leakage that
benefits the attacker. With our equipment and attack setup,
we can recover the key using 1,500 samples, each being a
measured power trace from one encryption, which provides
us with a benchmark of the system’s information leakage.

Detecting whether a clock has stopped invariably takes
some time. At the minimum, the detection mechanism needs
to wait and see a missed clock edge. For Borrowed Time
to be an effective countermeasure, detection and reset time

must be shorter than the time needed to carry out a static
power side-channel analysis attack. As mentioned above, the
main impediment for carrying out such attacks immediately
after stopping the clock is the prolonged period in which
dynamic effects from prior state changes affect the power
consumption of the target circuit, known as the memory
effect. While past works report the wait time (from when
the clock is stopped until measurements start to be taken)
used for attacks [41, 42], little information is provided in
support of the choice of this delay.

Because Borrowed Time relies on the delayed presence
of information leakage due to lingering noise from the
memory effect, we measure the impact of reducing the wait
time on the success of static power side-channel analysis
attacks. Reduction of wait time makes attacks harder, and
when reduced below 200 µs the attack becomes infeasible.
In comparison, Borrowed Time can eliminate leakage by
detecting that the clock has stopped and triggering a reset
within less than 1 µs, assuming the target hardware is oper-
ating in at least the MHz range.

To test the effectiveness of Borrowed Time, we incor-
porate it in the target design. We demonstrate that both of
its implementation variants are effective in preventing the
attack, and that with Borrowed Time the target does not
show evidence of leakage even with 1,000,000 samples.

To summarise, in this paper we make the following
contributions:
• We investigate the memory effect in the context of static

power side-channel analysis attacks, demonstrating that
the attacker needs to wait a few hundreds of clock cycles
after stopping the clock to observe usable static leakage.

• We present two designs of Borrowed Time, a counter-
measure for static power side-channel analysis attacks that
detects a stopped clock and resets sensitive data within as
little as one clock cycle, well before the time window in
which an attacker has the opportunity to mount an attack.

• We practically implement both versions of Borrowed
Time within an AES hardware implementation and evalu-
ate it by attempting to mount end-to-end key recovery
attacks, demonstrating that Borrowed Time effectively
mitigates this class of attack.

The rest of this paper is organised as follows. In Sec-
tion 2 we present necessary background on static power
side-channel analysis attacks and digital systems. Section 3
presents the two designs of Borrowed Time. Section 4
describes the setup we use for evaluating Borrowed Time,
including the equipment, the target, and the procedure we
use. We evaluate the memory effect in Section 5 and Bor-
rowed Time in Section 6. Finally, we discuss the limitations
of Borrowed Time and potential future work in Section 7.

2. Background

In this section we provide essential background on static
power side-channel analysis attacks and countermeasures,
and on digital circuit design concepts that are relevant to
our work.
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2.1. Physical Side-Channel Analysis

The physical interactions of electronic devices with their
environment can leak information about the computations
they perform and values processed within. This informa-
tion leakage manifests through inherent correlations be-
tween the computation or data being processed with the
observed physical effects. For example, the power dissipated
to change a register’s contents typically correlates with the
number of bit flips between the original and new values
being stored. The practice of exploiting such unintended
sources of information leakage to reveal secrets is known as
physical side-channel analysis. Adversaries seeking to carry
out this kind of attack typically require physical access to
the target device.

Since the seminal work of Kocher [29], side-channel
analysis has become a significant threat to cryptographic im-
plementations in particular, since visibility of computational
intermediates defies the black-box assumption1 that upholds
the security of cryptographic primitives. Side-channel at-
tacks are categorised by the effect responsible for leaking
information, with significant effort being invested in power
analysis, which exploits the power consumption of a target
device [28, 35].
Countermeasures. Countermeasure approaches against
physical side-channel analysis fall into two main categories:
information masking, which increases algorithmic noise; and
information hiding, which increases measurement noise.

Masking or ‘secret sharing’ is a widely adopted class of
countermeasures, in which the sensitive values being used
for computation within a system are never actually stored
in the system at any given moment [13]. For example, a
sensitive intermediate bit x is masked by a set of randomly
generated mask shares x0, x1, ..., xn, such that x = x0 ⊕
x1⊕ ...⊕xn. The data is ‘split’ and processed in the form of
these shares and combined at the end to produce the output.

Dual-rail pre-charged logic styles [15, 46, 49, 55, 56]
are an information hiding class of countermeasures that
aim to balance the data-dependence of power dissipation of
combinatorial logic gates. They use complementary signals
such that exactly one bit is always toggled for each clock
cycle transition. Both signal lines are held in the same
initial state, for example low, then which one is toggled
to high depends on the data. These logic styles are highly
dependent on perfectly balanced power consumption from
the underlying CMOS transistors and signal routing, which
is very difficult to achieve in practice [40].

2.2. Static Power Side-Channel Analysis

The majority of power analysis attacks historically ex-
plored are concerned with the dynamic power consumption
of target devices, i.e. the instantaneous power consumption
associated with changing the logical state of electronic gates.
In contrast, static power side-channel analysis, the focus of

1. Under the black-box model adversaries can only observe inputs and
corresponding outputs.

our work, is concerned with the power dissipated to maintain
the logical state of the device, which exhibits a dependence
on the data held within [1, 20].

Any digital circuit can be abstracted as a system made
up of pipelines of combinatorial logic elements sectioned
between sequential (state) elements. The core idea of ex-
ploiting static power information leakage is that a target
device can be held in a certain state (represented by the
contents of all state register elements) by stopping the clock
signal fed to the device for a long enough time such that: all
dynamic effects from transitioning into the given state have
died off, and measurements can be taken across a sufficiently
long window to average away a large amount of noise. Static
power side-channel analysis considers this averaged univari-
ate random variable (referred to as the measurement trace)
as representative of a target’s given state, whereas dynamic
power analysis considers an instantaneous power trace as a
time-dependent multivariate random variable representative
of a computation performed by the target (which is related to
its transition between states). A stronger attack model is typ-
ically required by static power side-channel analysis as an
adversary must be able to make use of clock manipulation,
although Moos [38] showed that in some scenarios attacks
based on static power can be performed without outright
clock control, instead leveraging the interrupted clock signal
provision within a clock-gated target circuit.

The earliest reports on this class of attack were based on
simulated analysis [20, 33] and the first practical demonstra-
tion was performed by Moradi [43] in 2014 against FPGA
targets. Since then, a few more works [4, 8, 27, 38, 39, 41,
42, 50] have practically evaluated static power side-channel
analysis attacks. A comprehensive history of the research
area is described in [40, 42].
Technology Down-Scaling. Dynamic power analysis has
traditionally been the subject of most power side-channel re-
search, however with the continued down-scaling of CMOS
technology as a proponent of Moore’s law [37], the con-
tribution of static leakage to overall power consumption is
becoming proportionally more prominent [26, 45, 63]. Sim-
ulations focusing on 90 nm, 65 nm, and 40 nm CMOS tech-
nologies show a direct increase in static leakage with smaller
scale technologies [33]. From practical results, Moradi [43]
demonstrates that the absolute leakage current and leakage
related to data contents does not necessarily directly increase
with smaller technologies between different FPGA families.
This work does not however assess the relative proportions
of static to dynamic leakage and goes on to mention that
there are more differences observed between the different
process technology families than simply those related to
scale, the details of which are not publicly available. The
work also finds logic placement and routing to have a
profound impact on static leakage. Moos [38] performs
similar testing with ASICs (Application-Specific Integrated
Circuits), conclusively demonstrating a drastic increase in
data-dependent static leakage across shrinking CMOS tech-
nologies.
Measurement Factors. In static power side-channel anal-
ysis, while keeping a target circuit in a certain state via
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some form of clock control, many samples are taken over
a long measurement window which are then averaged into
a single value representative of that given target state. This
intra-trace averaging has been shown to reduce noise ex-
ponentially [42].

The most prominent physical effects responsible for
quiescent current flow in CMOS circuits are sub-threshold
leakage current and reverse biased PN junction current [3].
The amount of leakage current in a system depends on
Process, Voltage, and Temperature (PVT) variations. Moos
et al. [42] investigate the influence of the magnitude of the
voltage and temperature on the measurements, finding that
the static current leakage of CMOS hardware exhibits an
exponential dependence on operating temperature, while in-
creases in operating voltage also increase the leakage signal
but only marginally. Moos [38] shows that the influence
of temperature is greater for smaller process technologies.
Moreover, the nonlinear temperature dependencies can be
leveraged by using the dimension of temperature to conduct
multivariate attacks [5, 14] which exploit measurements of
the same state over varying temperatures.
Memory Effect and Measurement Interval. To exploit
leakage of static register contents an attacker must wait
ample time for the dynamic effects within the target circuit
to settle before taking measurements. One might therefore
expect it to be sufficient to wait until all of the signal value
changes from a clock transition are propagated to the end
of their paths. However, it turns out that dynamic effects
continue to be observable in a circuit’s power consumption
profile well beyond this time, even extending across several
clock cycles in a phenomena coined the memory effect
in [44]. This effect may arise from slow settling transient
response of the leakage current among individual CMOS
elements, as well as from aggregated system effects like
reflections. Moradi and Mischke [44] use the memory effect
to combine leakages from multiple operations across mul-
tiple clock cycles into univariate readings. For their FPGA
target, the effect that extends their window of observable
dynamic leakage vanishes after 4 µs, however additional
noise introduced by the memory effect appears to continue
beyond that, which would affect static power measurements.

Past works observe that the memory effect is highly
influenced by the measurement setup used to acquire power
traces [41, 42, 44]. The experimental setups used in these
works are very similar and include a high gain (×1000)
DC amplifier stage with low (20 kHz) bandwidth. These
works mention that from their analysis the memory effect
influences static power measurement for the first 20 ms after
stopping the clock. The works go into no further detail on
how this was evaluated.
Countermeasures. With more attention having been given
towards dynamic leakage models than static, similarly the
effectiveness of countermeasures has mostly been evaluated
by their resistance to dynamic leakage. Thus, widely adopted
countermeasures accepted to mitigate power analysis attacks
can have shortcomings against a holistic threat model, which
includes considering static power side-channel analysis.
For example, previous works have indicated that attackers

leveraging static power analysis are able to exploit higher-
order leakages of masking schemes with much lower data
complexity than adversaries seeking to leverage dynamic
leakage [38, 41]. In the case of some logic balancing coun-
termeasures, results have even suggested that logic styles
resistant to dynamic power analysis can actually heighten
vulnerability to static power side-channel analysis [2, 3].
Relatively few countermeasures dedicated to coping with
the static power side-channel have been developed.

Time-enclosed logic styles [6, 7, 8, 10] are an extension
of dual-rail pre-charged logic that encode data in the time
domain such that data is only present for evaluation in a
limited evaluation phase time window during each clock
cycle. Extending on our previous description of dual-rail
pre-charged logic, at the end of the evaluation phase time-
enclosed logic designs will toggle the signal line that did not
previously toggle. This requires an internally derived sec-
ondary clock signal to complete the evaluation phase. These
countermeasures have the effect of shifting information leak-
age to higher frequencies as additional switching activity
is performed. Bellizia et al. [8] evaluated a time-enclosed
logic style as a countermeasure to static power side-channel
analysis and found it to be effective in eliminating leakage
from combinatorial logic gates, however, information still
leaks from state elements.

Several proposed countermeasures [64, 65, 68] take the
approach of generating additive noise within the system to
reduce the data-dependent signal-to-noise in power leakage.

2.3. Clocking in Digital Systems

Phase-Locked Loops. The most stable and accurate clock
signals are generated by crystal oscillators. Clock signals
must be distributed to all synchronous elements in a circuit.
In order to drive this high fan-out clocking network load,
digital designs will typically generate internal oscillatory
signals for distribution and synchronise them to an incom-
ing reference signal from a crystal oscillator. A Phase-
Locked Loop (PLL) is the closed-loop control system used
to achieve this synchronisation. PLLs are found in many
digital systems within their clock management primitives,
they are commonly used for clock generation, timing distri-
bution, clock recovery, frequency synthesis, and frequency
demodulation.

Figure 1. Block diagram showing basic elements of a PLL

The basic components of a PLL are shown in Figure 1.
The clock signal distributed throughout the circuit system is
generated by a Voltage Controlled Oscillator (VCO), which
produces an oscillating signal whose frequency depends on
the input voltage. The VCO output is fed back to a Phase
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Detector comparator that detects the phase difference be-
tween the system and reference clocks. This phase difference
acts as an error signal fed forward to the VCO in order to
change its frequency to match the reference. A Low-Pass
Filter stage removes unwanted high frequency noise from
the Phase Detector.
Clock-Gating. Clock-gating is a design methodology in
which the clock fed to part of a circuit is only enabled while
that part is in use. This significantly reduces the dynamic
power dissipation of the gated circuit at the relatively low
cost of implementing additional logic to enable and disable
the clock. Within smartcards this design practice has been
shown to reduce total power consumption by up to 40% [67].
Clock-gating a circuit with a PLL-driven clocking network
is not viable however, as PLLs require a stable incoming
clock before they can achieve lock.
Clocking in Side-Channel and Fault Injection Attacks.
Another popular class of attack that involves clock signal
manipulation are clock glitching fault injection attacks. In
these attacks rapid glitched clock pulses are injected be-
tween regular pulses which violate a circuit’s timing con-
straints. This can be used to bypass certain security-critical
operations or instructions by not giving them sufficient
time to terminate between pulses. Using a Digital Clock
Manager (DCM) primitive, Luo and Fei [34] simulate a
proposed method for detecting high frequency clock signal
fault injection. It requires maintaining a higher frequency
clock in the target which they use to sample the incoming
reference signal.
Clock Sensors. Kömmerling and Kuhn [30] discuss incor-
porating a robust low-frequency (clock) sensor in the context
of protecting smartcards from bus observation using a Scan-
ning Electronic Microscope. Lowering the target devices
clock frequency is said to make this kind of e-beam testing
easier. They suggest that implementations of filter elements
used to detect low-frequency input clocks are commonly
found in smartcard processors but are inadequate, and they
highlight that defences should be designed to be embedded
within processors.

Farheen et al. [16] design a clock-freeze detection sensor
and propose it as a countermeasure to Laser Logic State
Imaging2 (LLSI) [31], which they claim may also be appli-
cable to static power side-channel analysis attacks. However,
this detection mechanism has only been implemented in
isolation, and has not been evaluated as part of a larger
design. A limitation of their design is that it does not allow
a protected circuit to work within a system where it is clock-
gated since their detector takes several cycles to de-assert
its detection alarm flag.
Delays and Timing Closure. Timing closure relies on
extant well-understood models of signal propagation delays
through logic gates and routing elements across PVT oper-
ating conditions. These models are also leveraged in ring-
oscillator and time-to-digital sensor circuits, in some cases

2. A static side-channel analysis technique where instead of observing
power consumption, the state of a circuit is visually inspected using a laser,
also requires inducing static state in target with a stopped clock condition.

these can be used to carry out side-channel attacks against
other modules on the same chip [21, 66], even remotely
in cloud logic-renting systems. They can also be deployed
as a defensive measure to profile normal system behaviour
and monitor for anomalies that may indicate malicious
activity [36] such as that of Hardware Trojans [23] or supply
voltage attacks [69].

3. The Borrowed Time Countermeasure

Static power side-channel analysis relies on a combina-
tion of two major factors. The first being that the adversary
must be able to leverage some form of clock manipulation
to stop the clock during particular cycles. This can manifest
either naturally, during periods of non-activity within a
clock-gated target, or as a result of direct adversarial control
over the clock signal. The other major factor is that sensitive
data must remain present in state register elements for the
duration of an extended measurement period under a stopped
clock condition.

To address this, we propose an in-chip countermeasure
called Borrowed Time, to be deployed within a target circuit,
that eliminates exploitable static leakage of sensitive data
under a stopped clock condition. Borrowed Time involves
equipping a target circuit design with a module that mon-
itors the incoming clock signal for a stop condition. Upon
detection, the module triggers a reset alarm that clears
any sensitive information registered, thereby eliminating the
exploitable source of static leakage.

Borrowed Time is specific to the static power side-
channel analysis attack class, therefore we assume an ad-
versarial threat model wherein an attacker has the capability
to carry out this kind of attack. Specifically, this entails
physical access to the chip on which the target resides for
taking power measurements and the ability to leverage a
stopped clock signal provided to the target.

The Borrowed Time countermeasure is two-fold, first it
detects when the target circuit’s incoming clock signal is
stopped, then it triggers an asynchronous reset of all regis-
ters containing sensitive data. Registers with asynchronous
resets will set their data contents to zero upon assertion of
an asynchronous reset signal, without the need for a clock
transition.

We propose two possible approaches for detecting a
stopped clock. The first solution involves using standard
clock management circuitry that contains a PLL, as found
in many conventional digital designs. The second solution
comprises a custom asynchronous delay-based clock sam-
pling module, this can be used in conventional designs as
well as in clock-gated systems where PLLs will not work.
We then propose alteration of the target circuit implementa-
tion such that internal registers storing sensitive intermediate
data are immediately reset upon a triggered alarm indicating
stopped-clock detection, with the aim of preventing informa-
tion leakage of those intermediates during clock inactivity.
Our countermeasure is implemented at the logic design stage
and requires no alternative logic style and no alteration in
the standard cell libraries.
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We now describe our two approaches for implementing
Borrowed Time in greater detail.

3.1. PLL-Based Detection

For targets which receive a stable clock signal our clock
monitoring solution consists of a PLL. This is a relatively
simple solution to implement, as PLL components are often
incorporated in both ASIC- and FPGA-based conventional
digital systems. This solution is similar in principle to [16]
in that an internally generated oscillatory signal is used to
check the input clock, however we leverage the engineering
effort dedicated towards creating robust clock management
systems that incorporate PLLs. When a PLL’s reference
(input) clock and the feedback clock (output provided to the
system) are frequency- and phase-matched, the PLL is said
to be locked. To ensure synchronisation, sequential logic
elements clocked by a PLL can be held in a reset state until
lock is achieved. For this reason clock management modules
that contain PLLs will usually provide hardware designers
with the option of using output status signals such as a
LOCKED signal to indicate lock synchronisation. The time
a PLL needs to attain a locked state is known as lock time,
and is a crucial design parameter among PLLs, generally in
the order of microseconds [25, 61].

We propose using the logical NOT of the LOCKED
signal as a clock manipulation detector. PLLs are typically
sensitive enough to de-assert the LOCKED signal within
one clock cycle of a non-transitioning reference signal [60].
Therefore, by using such a signal to trigger an asynchronous
reset we can reduce the period in which data-dependent
power consumption is observable to only one immediate
additional clock cycle.

As long as an asynchronous reset is asserted for a
register, the contents of the register cannot be changed from
zero and since an asynchronous reset will be asserted as
long as the PLL is not locked, the target circuit module will
not be able to resume working normally until a reference
clock of the correct frequency is supplied. Further, to avoid
metastability problems upon clock resumption the design
must perform synchronous de-assertion of the asynchronous
reset signal.

The major limitation of a PLL-based solution is that in
order to operate correctly, PLLs rely on a stable incoming
clock signal over a long period of time which would not
be available within a clock-gated target. More generally,
any solution for a target within a gated system must not
be dependent or reliant on a clock signal with long-term
stability.

3.2. Asynchronous Delay-Based Detection

Given the limitation of a PLL-based solution we pro-
pose an alternative design that can work under conditions
where a continually transitioning clock is not provided.
This alternative solution involves incorporating a custom
asynchronous module in the target design. It is similarly
applicable to both ASIC- and FPGA-based systems, however

it has increased implementation complexity compared to the
PLL-based solution due to additional design considerations.
Incorporation of this solution into a target design will allow
the module to operate as normal in both gated and non-gated
systems, while also protecting against attacks that exploit a
gated stopped clock condition [38].

The clock-monitoring module consists of a chain of unit
delay elements that takes the incoming clock signal as the
input. See Figure 2. The output of each element is a version
of the clock, shifted by the propagation delay time through
the element. A subset of these time-shifted versions of the
clock are fed as input to a combinatorial logic circuit that
goes high if all of its inputs are equal. We refer to each
input signal line fed to this circuit as a tap on the chain
of delay elements. Table 1 shows the truth table for the
combinatorial element. If all inputs to the combinatorial gate
are zero, the clock has been stopped low; if they are all one,
its stopped high. In both of these cases the reset alarm signal
s_async_reset goes high, otherwise it stays low.

Figure 2. Asynchronous delay chain clock-stop detector circuit

c0 c1 ... cn−1 cn s_async_reset
0 0 0 0 0 1
0 0 0 0 1 0
· · · · · · · · · · · · · · · 0
1 1 1 1 0 0
1 1 1 1 1 1

TABLE 1. COMBINATORIAL LOGIC ELEMENT TRUTH TABLE

The overall goal of our custom module as an appendage
to a target system is to trigger an asynchronous reset upon
detection of a stopped incoming clock signal, otherwise
allowing the target to operate as normal (asynchronous reset
not asserted) without triggering false positive resets. We note
that our proposed system fails safely in the event of false
positives, as resets uphold the target’s security while affect-
ing its usability. In the rest of this section we describe design
considerations and requirements to make this achievable.

In order to describe the technical details of this solution
we first establish some terminology. We denote the ith time-
shifted clock signal on the delay chain as ci and we denote
the propagation delay from the original clock signal clk to
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ci as ti. Our solution effectively concurrently samples the
incoming clock signal at n different points in time from the
current clock to the clock tn seconds earlier. tn is the time-
shifted version of the clock with the longest delay from the
original clock signal.

Figure 3. Timing diagram of delayed versions of clock signal

Our system samples the incoming clock at various mo-
ments in time and relies on observing variation of the clock
signal as an indicator that the clock is operating normally.
Therefore, the span of time across which we sample the
clock must be long enough to capture its variation, oth-
erwise the system will trigger false positives. To sample
the variation of the clock signal, a key minimum bound is
that tn > Tclk/2, where Tclk is the nominal clock signal
period. An example timing diagram with near minimum
allowable tn (where it is marginally greater than Tclk ) is
shown in Figure 3. The figure shows the temporal relation-
ship between three different versions of the clock signal:
the original clock clk, the time shifted clock cn with the
maximum delay (tn) from the original, and one of the in-
between delayed clock signals cn/2 with approximately half
of the maximum delay. At any given moment sampled in the
window of time between t0 and immediately before time
‘Stopped’ the values of the three versions of the clock are
not all equal, which means that if these were all of the
inputs to the combinatorial circuit as described in Figure 2
and Table 1 then it would not trigger an asynchronous reset,
allowing the target circuit to operate as normal. ‘Stopped’
is the first moment where all versions of the clock (and
therefore all inputs to the combinatorial circuit) are equal (at
0). This sets our combinatorial circuit output high, indicating
a stopped clock and triggering an asynchronous reset of the
target. If tn were less than Tclk/2, then a false positive would
always be triggered in our combinatorial circuit because all
of the sample signals would be 0 immediately before the
second clock pulse in clk, which is actually still a moment
in time where the clock is operating normally.

tn also sets how quickly our system can detect a stopped
clock. In Figure 3 the final transition (1 to 0) of cn occurs tn

seconds after the same transition for clk, and only after that
is the stopped clock detected. While the absolute limit is
that tn must be greater than half the clock period, a larger
tn should be used in system implementation so that it is
robust to clock jitter and possible variations in the chain’s
propagation delays. If we were to set tn to the target’s
nominal clock period (e.g. tn = Tclk ), the detection time is
the same as in our PLL-based solution at one clock period.

Furthermore, although digital systems are generally de-
signed to work at a single nominal clock frequency, this
proposed solution can be implemented in such a way that
allows designers to specify a certain allowable frequency
range of operation for the target.
Lowest Frequency Threshold. If we set tn to a certain
value then the target must be provided with a clock such
that fclk > 1/(2tn) which will satisfy our detection timing
bound condition.
Highest Frequency Threshold. Aliasing is another poten-
tial source of false positives (failing safely). Aliasing is an
effect that causes misrepresentations of discretely sampled
signals due to insufficient sampling frequency which violates
the Nyquist Sampling Theorem3. In our case, a simple exam-
ple of aliasing to consider is that if our sampling frequency
is exactly the same as the incoming clock frequency then
each sample point is at the same phase of the clock cycle
e.g. in the first half cycle where the signal is always 1, thus
signal variation would not be captured.

We define the sampling frequency of our system using
the shortest delay between any successive taps on the delay
chain that are fed into the combinatorial logic element, i.e.
fs = 1/(ti − ti−1). To avoid aliasing fclk < fs/2.
Reset Design Constraint on Target. Our custom module
imposes a constraint on the target design. Sensitive regis-
ters which receive the asynchronous reset from this circuit
cannot be written to in the very first clock transition (post-
idle period for gated clock signal) since the reset signal will
first be de-asserted at the same time as the clock transition.
This should not pose a problem because the only sequential
elements that would be written to in the first clock transition
in a reactivated gated system would be the input registers.
Thus, the only design constraint on use of the asynchronous
reset from Borrowed Time is that it must not be part of the
reset logic for input registers.

4. Evaluation Setup

To evaluate our Borrowed Time countermeasure, we
perform practical static power side-channel analysis attacks
against a target cryptographic device, attempting to extract
the secret key both with and without Borrowed Time in
place. We perform a Correlation Power Analysis (CPA) [11]
attack against an implementation of AES128.

We first describe a CPA attack against AES using static
leakage and the metric used for assessing attacks. We then

3. fs > 2fsignal , where fs is the sampling frequency and fsignal is
signal being observed.
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describe the implementation we target, our measurement
setup and procedure. Last, we carry out an end-to-end attack
against the unprotected implementation to validate the setup.

4.1. CPA Against AES

Rijndael AES. The Advanced Encryption Standard,
AES [47], is a ubiquitous symmetric block cipher with 128,
192, and 256-bit key variants that perform 10, 12, and 14
rounds of computation, respectively. Figure 4 depicts the
steps of the AES encryption algorithm. Decryption of AES
ciphertext uses the same steps performed in reverse, with
each operation inverted. The algorithm is based on repeated
rounds of the following operations:
• AddRoundKey. XOR operation with the round key and ei-

ther the initial plaintext (before first round) or (thereafter)
the state output from the previous round.

• SubBytes. Byte-wise substitution (SBox).
• ShiftRows. With the 16 bytes represented by a 4x4 grid,

the bytes in row 1, 2, 3, and 4 undergo a circular shift by
0, 1, 2, and 3 columns to the right, respectively.

• MixColumns. A column-wise invertible linear transform.
This operation is skipped in the final round.

• Key Expansion. Known, reversible function of the original
key that generates a different key for each round.

Figure 4. N-round AES encryption algorithm block diagram

Power Model. The first step for performing CPA is to select
a power model. The dependency of the power consumption
of a CMOS circuit on the data being processed within
can be approximated by various power models. The most
commonly used leakage models are Hamming weight (HW)
and Hamming distance (HD) (or ‘switching distance’). In
the HW model [28], power consumption is dependent on the
number of bits that are set on (to 1) in stored data. In the
HD model [11], the consumption depends on how many bit
transitions (0 → 1 or 1 → 0) occur in a computation. Since
we are concerned with static leakages which depend on fixed
register contents, we use the HW power model against the
intermediate, i.e. we expect that the power consumption for

a given state is correlated with the number of register bits
that are set to 1.
Target Intermediate. The next step is to identify a com-
putational intermediate (a value registered at some point in
execution) that depends on a combination of known values
(inputs and/or outputs) with a part of the secret value that
has a relatively small guess space. We opt for a final-round
attack against AES128 where the target intermediate xi is
the ith byte of the output state from the penultimate (ninth)
round, this is also the input to the final round SBox. Our
known value is the output of the encryption operation (the
ciphertext). All operations in the final round of AES are
byte-wise since the MixColumns operation is not performed.
Thus, reversing the final round AES operations, each byte
of the intermediate can be derived using Equation (1) from
the known corresponding byte of the output ciphertext cj ,
and the corresponding round subkey kj for which the guess
space contains 256 candidates.

xi = InverseSubBytes(cj ⊕ kj) (1)

i is a given index of a byte of the ninth round output, and
i maps to j after the final round ShiftRows operation.
Attack Procedure. We now describe the basic procedure
of last-round CPA against AES. In the acquisition phase
we perform many (N ) encryptions with various random
plaintext inputs, and for each encryption we take a mea-
surement of the power consumed by the device (power
trace) during a period of the computation when we know
it stores the intermediate value. For a given encryption, the
value of the intermediate should have an influence on that
measured power trace according to our hypothesised HW
power model. For each encryption we store a tuple of the
power trace P and the corresponding output ciphertext cj .

Separate from acquisition is the processing phase, which
we outline in Algorithm 1. For the purpose of this expla-
nation we are concerned with one subkey byte, i.e. one i
in Algorithm 1. One trace at a time, for each of the 256
possible round subkey guesses we derive the value that the
intermediate would assume based on the stored output and
the key guess using Equation (1), and we store the HW
of this calculated intermediate (in H). We end up with a
256 × N matrix where each row represents the expected
power consumption for all traces for a given subkey guess.
The correlation between the expected power consumption
for each subkey guess across all traces H[kj] with the
measured power consumption P is then calculated. Given
enough traces are used, only the correct subkey expected
power consumption will exhibit correlation with the mea-
sured consumption.

For the sake of explanation we distinguished acquisition
and processing phases, describing the overall process for a
limited number (N ) of traces. However, this does not mean
we perform them one after the other, rather we perform
them simultaneously. Furthermore, we do not set out to
perform the attack with a predefined number of traces (N ),
instead during the attack we constantly evaluate the key
guess correlations as more traces are acquired to see if
standout candidates have emerged.
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Algorithm 1 CPA against final round of AES
1: for i← 0 to 15 do ▷ For all key block bytes
2: j ← ShiftRowIndex(i)
3: for traces ← 0 to N do
4: for kj ← 0 to 255 do ▷ For all subkey guesses
5: xi ← InverseSubBytes(cj ⊕ kj)
6: H[kj].append(HW(xi)) ▷ H: 256× traces
7: end for
8: C[kj ]← correlation(H[kj],P )
9: Subkey guess← argmax(|C|)

10: end for
11: end for

Evaluation Metric. Measurements to Disclosure (MTD)
is the most commonly used metric to assess the relative
performance of various attack methods or parameters, and
to assess the resistance of countermeasures employed by
target devices. First introduced in Tiri et al. [57], MTD is
the number of measurement traces taken to reveal a sought
after secret value (typically a cryptographic key or subkey).
More specifically in the case of CPA, MTD is defined as the
cross-over point between the correct key guess correlation
coefficient and the maximum of correlation coefficients for
all wrong key guesses. The MTD approach is fundamentally
tied to the attack method employed and also works as a
metric representative of information overall leakage.

4.2. Cryptographic Target

Our target is a dedicated cryptographic device, config-
ured with a third-party AES core [52] onto a Xilinx Kintex-7
FPGA. The algorithm implementation is not masked and
is parallelised such that one AES round is performed per
clock cycle, with one prior cycle for the initial AddRoundKey
operation on the input. We purposely use an implementation
without standard side-channel protections to bias in favour
of the attacker and best illustrate the contrast in ease of key
extraction without vs. with Borrowed Time deployed.

We perform a final-round attack as previously described
in which the intermediate target is the input to the final round
SBox, which, in our target implementation, is registered
between the penultimate and final active clock transitions
(rising edges). We refer to this period as the final clock cy-
cle, the final ciphertext output is clocked out at the transition
that terminates this cycle. To attack this implementation we
stop the clock provided to the target during this cycle for
an extended measurement period.

4.3. Measurement Setup and Procedure

Target Hardware. For evaluation we use the
SAKURA-X [24] – also known as SASEBO-GIII –
in our experiments. The board houses a control Xilinx
45 nm Spartan-6 FPGA, and a target Xilinx 28 nm Kintex-7
FPGA which we configure with the AES core. The control
FPGA controls all of the target’s I/O, including its supplied
clock signal.

We derive the target power consumption traces by mea-
suring the voltage across a shunt resistor placed in series
with the target’s voltage supply. The SAKURA-X board
features easily accessible probe points across the shunt
on the target voltage supply line. The target FPGA has a
nominal 1.0 V supply voltage. As modified by Moradi [43]
for conducting similar attacks, we replaced the board’s
original 10 mΩ shunt with a 1Ω resistor that has a low
temperature coefficient. This and the increased resistance
improves our measurement accuracy. Since this replacement
shunt increases the voltage burden, we set the supply voltage
to arrive back up to 1.0 V at the target supply pin side of the
shunt resistor by adjusting an on-board voltage-regulating
potentiometer.

The control FPGA communicates with a PC via serial-
over-USB. This USB connection supplies power to all de-
vices on the SAKURA-X. To ensure there is no interference
on the target voltage supply line from activity on the USB
chip, we switch off the USB communication channel during
any measurement periods and reopen it once complete.
Measurement Equipment. For acquiring power measure-
ments of the target we connect a LeCroy AP 034 Active Dif-
ferential Probe across the shunt resistor terminals and, since
our signal of interest is made up of low-frequency/static
components, we plug the probe into an oscilloscope with
bandwidth-limited DC coupling set. This is in contrast to
dynamic power analysis where AC coupling can be used.
The probe operates with ×1 attenuation and gain.

We use a LeCroy Waverunner 6100A oscilloscope with
8-bit vertical resolution set to its highest vertical accuracy
(2 mV/div), and in its bandwidth limited (to 20 MHz) mode
for greater accuracy from rejection of high frequency noise.
This effectively applies a low-pass analogue filter with a
cutoff frequency of 20 MHz. We set our oscilloscope to
sample at 5 MS/s.
Clock Control and Measurement Interval. We control
the clock signal provided to our target FPGA with the
control FPGA. To perform the conventional attack, under the
model where an adversary is outright stopping computation
at an intermediate clock cycle, we stop the clock at the last
clock cycle for our given extended measurement interval.
We ensure that all of the inputs to the target are set to zero
during the measurement period. We configure the control
FPGA to send a trigger signal to the oscilloscope during
the measurement interval.

We must stop the clock for a sufficiently long period
such that the memory effect subsides before we start taking
measurements, and we have a sufficiently long measurement
period for intra-trace averaging to remove a significant
amount of noise. We refer to the length of time from when
we stop the clock to the beginning of measurement acquisi-
tion as the time offset, and to the time from the start to the
end of the acquisition period as the window length. Previous
works [41, 42] have indicated 20 ms to serve as a good rule
of thumb for the length of time to wait for these effects
to subside before taking static power measurements. In our
experiments we wait 25 ms before then taking measurements
over a 20 ms interval.

9



Temperature Control During Measurement. The most
significant environmental factor affecting static leakage cur-
rents is temperature [42]. Increases in temperature lead
to exponential increases in static leakage current. There-
fore, we control the temperature environment of our tar-
get by placing it inside a climate chamber, the utility of
which is two-fold. Primarily, we aim to stabilise any effect
temperature variations have on leakage measurements by
keeping the target at a constant temperature. Secondly, we
want to create optimal conditions for attack performance
which means we need to set a high temperature to amplify
leakages. We set the climate chamber to 60◦C, since the
SAKURA-X board was found to sporadically power off
at higher temperatures. The climate chamber we use is a
Ratek H060 Hybridisation Oven which has a temperature
control range from 6◦ above ambient to 99◦C and ±0.2◦

stability. The majority of previous works which mount prac-
tical static power attacks use similar forms of temperature
control [4, 8, 27, 38, 39, 41, 42].

We find that internal (in-chip) temperature effects also
have considerable impact on leakage measurements. Per-
forming computations generates heat within the target. To
stabilise this effect we warm up the chip internally by
performing the same computations at the same frequency
as what would later be performed during the measurement
phase. For example, if during the measurement period we
perform ten encryption operations per second, we do the
same during the warm up phase.
Post-Processing Temperature Control. While using a
climate chamber does a reasonable job of stabilising the
target’s temperature, the target placed within is still subject
to drifts in temperature due to non-ideal control stability,
and variability in internal temperature distribution. Such
temperature changes are inevitable even within an enclosed,
controlled system. These effects are exhibited in measure-
ment traces as slow drifts up and down in the power read-
ings, whose variation far exceeds that between immediately
adjacent traces which should exhibit data-dependence. Pre-
vious practical works have mitigated this source of noise
with various post-processing strategies. In [42] the moving
average over an 8-trace window is subtracted from the trace,
effectively performing high-pass filtering. [43] interleaves
each measurement trace a with measurement of the target in
a deterministic baseline state which they then subtract from
the immediate preceding trace. We have opted to remove
all low-frequency signal components by applying a high-
pass filter to the power traces taken over the measurement
period. We use a digital fifth order Butterworth filter with a
cutoff frequency of 0.6× the Nyquist frequency. We arrived
at these characteristics via trial and error.

4.4. Validation

Our CPA attack is successful in performing full key
recovery against the unprotected AES target. Thus, we
validate our attack setup and procedure as a viable means
of exploiting static power leakage. Figure 5 shows the
correlation of each subkey candidates hypothesised power

consumption across 30,000 measured traces. Each grey line
represents the progression of correlation of the expected
power consumption of a certain subkey guess with the
actual measurement traces for various amounts of total
traces. The red line represents the correlation of the correct
subkey guess for that particular subkey byte. In this example,
the correct subkey candidate for the 10th key byte clearly
emerges after the first 800 traces. Note, this is from a single
subkey.

Figure 5. CPA against unprotected AES 10th key byte, 800 MTD

On average, recovering all 16 correct subkey candidates
took approximately 1,500 measurement traces, hence MTD
is 1,500. We calculated this average across all subkeys by
using 10 disjoint subsets of our measurement trace, i.e. for
each set we record the MTD for each subkey and average
across 160 recoveries overall. This attack success metric
provides us with a relative benchmark on the level of leakage
under optimal conditions given our setup.

5. Assessing the Memory Effect.

We have described our setup and procedure for conduct-
ing a CPA attack against an AES target and validated the
setup by performing a full key recovery, also producing a
MTD metric indicative of our attack performance. Now, we
use the same technique to assess the influence of the memory
effect on overall attack performance. Specifically, we assess
how attack performance is affected by the memory effect
when we use acquisition windows that have shorter offsets,
i.e. the window starts closer to the final active clock edge
from where the clock is stopped.

We recall that due to the memory effect, dynamic effects
from circuit state transitions do not subside immediately
once the logical transitions themselves have terminated [44].
These effects continue to linger and have been shown to
influence power measurements taken long after the transi-
tions [41, 42, 44]. This is significant for the effectiveness of
Borrowed Time as a countermeasure to static power side-
channel analysis attacks because Borrowed Time drastically
reduces the time that sensitive values remain leaking in a
target once the clock has been stopped.
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We evaluate the influence of the memory effect by
repeating the attack against the unprotected target with
varying time offsets and window lengths in order to gauge
the duration and extent of its influence on static leakage
measurements. Aside from varying these parameters, we
carry out the attack as it is described in Section 4. This
also extends to our analysis process, we calculate MTD
by averaging across multiple independent subsets of our
captured traces from the attacks. We begin by fixing the
offset at 20 ms and narrowing the acquisition window length
over repetitions of the attack until there is a noticeable
decrease in attack performance. We find the window length
of 250 µs to be the smallest that gives comparable attack
performance to the 20 ms window. Performing the attack
with this window length will be very sensitive to the leakage
signal strength in the measurement trace.

Therefore, we then fix the window length to 250 µs and
repeat the attack, shifting the time offset closer to zero
each time, i.e. bringing the whole acquisition window nearer
to the last active clock edge before the clock is stopped.
Figure 6 shows the results of the attack for varying offsets.

Figure 6. CPA attack performance for various start-time offsets with 250µs
measurement window

We find that the memory effect appears to influence
measurements for offset as late as 800 µs. Figure 7 shows
an example CPA key guess progression with around 24,000
MTD at the 600 µs offset. From that point, with reducing off-
set the memory effect influence increases until 200 µs where
the attack is unsuccessful with 100,000 measurements. We
use this as our cut-off point since it is approximately two
orders of magnitude greater than the optimal MTD. From
these results, we deem the memory effect to last for at
minimum the first 200 µs after the active clock edge.

Regarding our countermeasures, if we take this to be
the memory effect duration specific to our measurement
setup, any configuration that detects a stopped clock within
200 µs should protect the circuit from static power attacks.
We believe that the attack is increasingly difficult for shorter
offsets until a point where the memory effect noise obscures
leakage to the point where the attack is infeasible. Borrowed
Time (in both of its variants) can detect a stopped clock

Figure 7. CPA against 10th key byte of AES with 600µs offset, 250µs
measurement window, 24,000 MTD

within one clock period. This means that if Borrowed Time
is deployed within a cryptographic co-processor, whose typ-
ical operating frequency would be in the megahertz range,
detection and reset under a stopped clock condition occurs
at latest after 1 µs.

6. Borrowed Time Implementations and Eval-
uation with End-to-End Attacks

Having described the general design and approach of
incorporating the Borrowed Time countermeasure within
a hardware system earlier in Section 3, we now describe
our implementation of both of its variants within the target
FPGA device. Then, using the same CPA attack evaluation
setup described in Section 4 we attempt to attack the pro-
tected AES implementations.

6.1. Borrowed Time Implementations

PLL-Based Solution. For configuration onto our FPGA
target, we instantiate a Xilinx MMCM [60] (Mixed-Mode
Clock Manager) DCM primitive that contains a PLL which
monitors the incoming clock signal. See Figure 8. This IP
module is ported directly to dedicated clock management
circuitry on 7-series Xilinx FPGAs. The MMCM module
provides an optional status output signal from its internal
PLL called CLKINSTOPPED which indicates that the ref-
erence input clock has stopped. This signal is asserted within
one clock cycle of stoppage [60].

We verify the clock-stop detection function and the reset
timing (relative to clock stop time) both through Post Place
and Route Simulation performed in Xilinx’s design tool-
chain, and on the physical FPGA target by probing an output
pin tied to the reset signal.
Asynchronous Delay-Based Solution. Implementation of
this variant of the Borrowed Time countermeasure on an
FPGA has added complexity because we are constrained
to using the resources available on the target FPGA to
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Figure 8. PLL-Based Solution Block Diagram

create a tuned delay circuit. As an aside, a corresponding
ASIC implementation in which circuit elements and their
placement is customisable would provide designers greater
control over timing performance.

As described in Section 3, the design consists of an
asynchronous system that must be tuned to a range of
allowable clock operating frequencies for the target device.
First, we choose a nominal clock frequency of 8 MHz for
our FPGA-based AES target and design accordingly for an
allowable frequency range based around that.

The next design step is to identify the digital design
resources available in the platform on which the target
circuit is deployed, which in our case is a 7 Series Xilinx
FPGA. The most important parameter to discern is the
average propagation delay of the unit delay elements that
form the delay chain, since these delays define the low
and high frequency threshold. To recap, the low frequency
threshold is defined by the total delay between first and
last elements on the chain. The high frequency threshold is
defined by the minimum delay between successive taps on
the delay chain.

In FPGAs, any and all combinatorial logic is imple-
mented by lookup table (LUT) primitives. These elements
are essentially configurable truth tables that can implement
any Boolean function. We use LUTs to instantiate the
asynchronous clock monitoring circuitry for this solution
(shown in Figure 2) within our FPGA target. Our target is
a Xilinx FPGA, so we design our implementation directly
using the primitive LUT resource types that Xilinx build
into their FPGAs [62]. Among these primitives are LUT1
and LUT6 2 which are 1-input 1-output and 6-input 2-
output LUTs, respectively. We use LUT1 primitives for the
unit delay elements. These are effectively signal buffers.
To construct the combinatorial logic element described by
Table 1 we use layers of LUT6 2 primitives.

We create a delay chain of LUT1s initially for the
purpose of timing analysis. Post Place and Route Simulation
indicates the propagation delay between successive LUT1
elements to range from 175 to 297 ps, with approximately
200 ps on average. The delay between clk and c0 is sig-
nificantly larger at 2.7 ns due to additional routing from
the clock IO buffers to configurable LUTs. Probing internal
FPGA wires will not reliably show us the relative delays
between taps since this would require additional routing to

IO blocks which introduces significantly more delay than
that between nearby combinatorial elements. This is why
we use the delay value estimates provided by the design
tool-chain. These estimations are reliable given they are the
ground-truth used for timing analysis of digital designs. We
also set design constraints to ensure that the elements are
placed and routed nearby.

For a target operating frequency range of 1 MHz < f <
12.5 MHz we tune the clock monitoring circuit by taking
every 200th delay tap until the 10, 000th tap, giving a total
delay at the final element of 20 µs. These 50 delay chain taps
require three layers of LUTs making up the combinatorial
logic element. The first layer is made of up of nine LUT6 2s
that take in the delay chain taps as input. Each LUT6 2 in
the first layer has two Boolean outputs: one indicating if all
inputs were equal (which we will call EQUAL), and the other
indicating whether all inputs were 0 or 1 (CLK_IND). Thus,
18 inputs are input to the next layer. Each subsequent layer
of LUT6 2s takes these input signals and passes out the
same logic. Taking three (EQUAL, CLK_IND) input pairs,
its output EQUAL is high if all input EQUALs are high and
all input CLK_INDs are equal. Its CLK_IND output is set
high if all CLK_INDs are high. The second layer outputs
six signals to the final layer LUT6 2.

As with the PLL-based solution, we verify the overall
delay-based clock-stop detection function and the reset tim-
ing with both design simulation and physical probing of the
configured FPGA.

6.2. CPA Attacks Against Protected Targets

Here we evaluate Borrowed Time in the face of our CPA
attack as described and performed in Section 4.

We attack the target AES system twice, once with
each variant of Borrowed Time implemented as described
above. We leave all aspects of the attack setup as they
are described throughout Section 4, with one necessary
difference in procedure. Since Borrowed Time resets the
target mid-computation upon detecting a stopped clock we
do not get the correct output from attacked encryptions.
As a side note, this serves as a further evidence that the
deployed variants of Borrowed Time are operating correctly
in terms of detection and reset alarm trigger. So that we can
attain the output ciphertext needed for the attack, we repeat
each random plaintext’s encryption performed without clock
manipulation. The extra encryptions are relatively quick and
have negligible effect on attack duration.

For both variants of Borrowed Time, PLL-based (Fig-
ure 9) and delay-based (Figure 10) clock-stop detection,
we find there to be no useful information leakage and
are therefore unable to recover any of the subkeys with
1,000,000 traces. This is shown in the figures as the correct
key guess does not emerge with higher correlation than other
candidates, instead staying around 0. What this actually
indicates is that there is no usable residual leakage of
previous data contents following an asynchronous reset that
can be exploited in the static power attack model.
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Figure 9. CPA over 1,000,000 traces against 10th key byte of AES protected
with PLL-based solution, no emergence of correct candidate

Figure 10. CPA over 1,000,000 traces against 10th key byte of AES
protected with asynchronous delay-based solution, no emergence of correct
candidate

7. Limitations and Future Work

A potential limitation of Borrowed Time is that while
it removes sources of static leakage, we believe it may
also increase dynamic leakage due to the additional switch-
ing activity of sensitive data being reset to zero. How-
ever, in the case of cryptographic systems, we note that
a well-designed module clears its registers between en-
cryptions/decryptions [48]. Hence, our countermeasure is
unlikely to cause additional leakage.

Our countermeasures are likely to be ineffective against
adversaries that have highly advanced invasive capability
such as the capability to edit circuits, e.g. by using a focused
ion beam [22]. With such a capability, an adversary can
disable Borrowed Time, e.g. by disrupting the reset signal.
At the same time, circuit editing allows much stronger at-
tacks, including directly observing the contents of registers,
which bypasses any need to carry out side-channel analysis.

Moreover, equipment for circuit editing is quite expensive
and require a high level of expertise, significantly limiting
the number of potential adversaries.

Less powerful adversaries may try to disrupt Borrowed
Time, e.g. by using a laser to disable the reset signal [54].
However, such fault injection attacks attacks have a low
spatial resolution, laser spot diameters are on the order of
at minimum 1 µm [59], whereas modern silicon features are
typically below 100 nm. Hence, if system layout tightly cou-
ples the reset signal to the target circuit, isolated disruption
of the reset is likely to be impractical. We leave validation
of this to future work.

Resets triggered by Borrowed Time need only apply to
registers that hold sensitive values at any point during exe-
cution. However, identification of sensitive registers among
all others can potentially be an onerous task to expect of de-
signers, and prone to mistakes that would defeat the purpose
of implementing Borrowed Time. In such scenarios, our
recommendation is to cautiously apply the reset generated
by Borrowed Time to all registers within highly security
critical hardware modules. As mentioned in Section 3.2, this
is with the exception of the input registers of a module that
is clock gated

A potential direction for further research is investigating
the interaction between Borrowed Time and countermea-
sures that have been proven effective in preventing dynamic
leakages, but have shortcomings wherein they are less effec-
tive against static leakage, such as masking [40]. We believe
a complementary combination of approaches would offer a
holistic security solution.

8. Conclusion

The increasing relative weight of static power in the
power budget of electronic circuits may increase the risks
posed by static power side-channel analysis. In this work
we present Borrowed Time, a countermeasure against static
power side-channel analysis attacks. Borrowed Time op-
erates by ensuring that registers do not contain sensitive
secrets when the circuit’s clock is stopped. We evaluate
Borrowed Time and demonstrate that it provides an effective
protection against practical attacks even without any logical
countermeasures.
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and A. Trifiletti, “Univariate power analysis attacks
exploiting static dissipation of nanometer CMOS VLSI
circuits for cryptographic applications,” IEEE Transac-
tions on Emerging Topics in Computing, pp. 329–339,
2017.

[4] D. Bellizia, D. Cellucci, V. Di Stefano, G. Scotti, and
A. Trifiletti, “Novel measurements setup for attacks
exploiting static power using DC pico-ammeter,” in
ECCTD, 2017.

[5] D. Bellizia, M. Djukanovic, G. Scotti, and A. Trifiletti,
“Template attacks exploiting static power and appli-
cation to CMOS lightweight crypto-hardware,” Inter-
national Journal of Circuit Theory and Applications,
vol. 45, no. 2, pp. 229–241, 2017.

[6] D. Bellizia, G. Scotti, and A. Trifiletti, “TEL logic
style as a countermeasure against side-channel attacks:
Secure cells library in 65nm CMOS and experimental
results,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 65, no. 11, pp. 3874–3884, 2018.

[7] D. Bellizia, S. Bongiovanni, M. Olivieri, and G. Scotti,
“SC-DDPL: A novel standard-cell based approach for
counteracting power analysis attacks in the presence
of unbalanced routing,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 7, pp.
2317–2330, 2020.

[8] D. Bellizia, R. Della Sala, and G. Scotti, “SC-DDPL
as a countermeasure against static power side-channel
attacks,” Cryptography, vol. 5, no. 3, 2021.

[9] D. J. Bernstein, “Cache-timing attacks on AES,”
2005, preprint available at http://cr.yp.to/papers.html#
cachetiming.

[10] S. Bongiovanni, F. Centurelli, G. Scotti, and A. Tri-
filetti, “Design and validation through a frequency-
based metric of a new countermeasure to protect
nanometer ICs from side-channel attacks,” Journal of
Cryptographic Engineering, vol. 5, 04 2015.

[11] E. Brier, C. Clavier, and F. Olivier, “Correlation power
analysis with a leakage model,” in CHES, 2004, pp.
16–29.

[12] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” in USENIX Security, 2003, pp. 1–14.

[13] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “To-
wards sound approaches to counteract power-analysis
attacks,” in CRYPTO, 1999, pp. 398–412.

[14] M. Djukanovic, D. Bellizia, G. Scotti, and A. Tri-
filetti, “Multivariate analysis exploiting static power on
nanoscale CMOS circuits for cryptographic applica-

tions,” in AFRICACRYPT, 2017, pp. 79–94.
[15] B. Fadaeinia, T. Moos, and A. Moradi, “Balancing

the leakage currents in nanometer CMOS logic -—
a challenging goal,” Applied Sciences, vol. 11, no. 15,
2021.

[16] T. Farheen, S. Roy, S. Tajik, and D. Forte, “A twofold
clock and voltage-based detection method for laser
logic state imaging attack,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 31, no. 1,
pp. 65–78, 2023.

[17] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromag-
netic analysis: Concrete results,” in CHES, 2001, pp.
251–261.

[18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures
on contemporary hardware,” J. Cryptographic Engi-
neering, vol. 8, no. 1, pp. 1–27, 2018.

[19] D. Genkin, A. Shamir, and E. Tromer, “RSA key
extraction via low-bandwidth acoustic cryptanalysis,”
in CRYPTO (1), 2014, pp. 444–461.

[20] J. Giorgetti, G. Scotti, A. Simonetti, and A. Trifiletti,
“Analysis of data dependence of leakage current in
CMOS cryptographic hardware,” in ACM Great Lakes
Symposium on VLSI, 2007, pp. 78–83.

[21] J. Gravellier, J.-M. Dutertre, Y. Teglia, and P. Loubet-
Moundi, “High-speed ring oscillator based sensors for
remote side-channel attacks on FPGAs,” in ReConFig,
2019, pp. 1–8.

[22] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S.
Krissler, C. Boit, and J.-P. Seifert, “Breaking and en-
tering through the silicon,” in ACM CCS, 2013, pp.
733–744.

[23] T. Hoque, “Ring oscillator based hardware Trojan de-
tection,” Masters Thesis, University of Toledo, Ohio,
USA, 2015.

[24] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh,
“SASEBO-GIII: A hardware security evaluation board
equipped with a 28-nm FPGA,” in Consumer Electron-
ics, 2012, pp. 657–660.

[25] “Intel® MAX® 10 FPGA device datasheet,”
https://www.intel.com/content/www/us/en/docs/
programmable/683794/current/pll-specifications.html,
Intel, October 2022.

[26] J. Kao, S. Narendra, and A. Chandrakasan, “Subthresh-
old leakage modeling and reduction techniques,” in
ICCAD, 2002, pp. 141–148.

[27] N. Karimi, T. Moos, and A. Moradi, “Exploring the
effect of device aging on static power analysis attacks,”
TCHES, vol. 2019, no. 3, pp. 233–256, 2019.

[28] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” in CRYPTO, 1999, pp. 388–397.

[29] P. C. Kocher, “Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems,” in
CRYPTO, 1996, pp. 104–113.

[30] O. Kömmerling and M. G. Kuhn, “Design
principles for tamper-resistant smartcard
processors,” in Smartcard 99, 1999.
[Online]. Available: https://www.usenix.org/

14

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://www.intel.com/content/www/us/en/docs/programmable/683794/current/pll-specifications.html
https://www.intel.com/content/www/us/en/docs/programmable/683794/current/pll-specifications.html
https://www.usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-resistant-smartcard


conference/usenix-workshop-smartcard-technology/
design-principles-tamper-resistant-smartcard

[31] T. Krachenfels, F. Ganji, A. Moradi, S. Tajik, and J.-P.
Seifert, “Real-world snapshots vs. theory: Questioning
the t-probing security model,” in IEEE SP, 2021, pp.
1955–1971.
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