
Thunderhammer: Rowhammer Bitflips via
PCIe and Thunderbolt (USB-C)

Robert Dumitru∗
Ruhr University Bochum &
The University of Adelaide

robert.dumitru@adelaide.edu.au

Junpeng Wan∗
Purdue University

wan155@purdue.edu

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Rick Kennell
Purdue University
rick@purdue.edu

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Yuval Yarom
Ruhr University Bochum
yuval.yarom@rub.de

Abstract
In recent years, Rowhammer has attracted significant atten-
tion from academia and industry alike. This technique, first
published in 2014, flips bits in memory by repeatedly ac-
cessing neighbouring memory locations. Since its discovery,
researchers have developed a substantial body of work ex-
ploiting Rowhammer and proposing countermeasures. These
works demonstrate that Rowhammer can be mounted not
only through native code, but also via remote code execution,
such as JavaScript in browsers, and over networks.
In this work, we uncover a previously unexplored

Rowhammer vector. We present Thunderhammer, an at-
tack that induces DRAM bitflips from malicious peripherals
connected via PCIe or Thunderbolt (which tunnels PCIe).
On modern DDR4 systems, we observe that triggering bit-
flips through PCIe requests requires precisely timed access
patterns tailored to the target system. We design a custom
device to reverse engineer critical architectural parameters
that shape PCIe request scheduling, and to execute effective
hammering access patterns. Leveraging this knowledge, we
successfully demonstrate Rowhammer-induced bitflips in
DDR4 memory modules via both PCIe slot connections and
Thunderbolt ports tunnelling PCIe.

1 Introduction
Rowhammer is a fault injection attack that exploits a hard-
ware vulnerability in modern DRAM: repeatedly accessing or
“hammering” rows in systemmemory can disturb and flip bits
in adjacent rows. The disturbance error mechanism respon-
sible for this phenomenon was first discovered in 2014 [22].
Soon after in 2015, Seaborn and Dullien [30] showed it could
be weaponised to bypass memory protection, escalate privi-
leges to gain kernel-level permissions, and escape sandboxed
environments. In the decade since, Rowhammer has garnered
significant attention from both academia and industry.
Several defence mechanisms have been proposed at vari-

ous layers of hardware and software, however none of them
is a panacea, and virtually all impose some performance
overhead. Error-Correcting Code (ECC) DRAM could reduce
∗Equal contribution first author.

CPU

Memory
Controller

PCIe Root
Complex

Target System

PCIe Slot

Thunderbolt
Port

1

2

Software generating
memory requests

3Thunderhammer

Figure 1. Rowhammer attack vectors: 1 Thunderhammer
via PCIe slot, 2 Thunderhammer via Thunderbolt port tun-
nelling PCIe, and 3 Typical attack mounted from software.

the Rowhammer attack surface as it can detect and correct
a limited number of bitflips. However, attacks can still be
reliably mounted as a previous study shows [5]. Beyond ECC,
modern DDR4 systems and onward incorporate Target Row
Refresh (TRR) within DRAM chips or memory controllers
(e.g., Intel’s pseudo-TRR) [10]. TRR works by monitoring
row activation counts to identify potential aggressor rows,
then once a predefined threshold is exceeded, refreshing ad-
jacent rows at the next scheduled refresh cycle. Despite these
mitigation efforts, with TRRespass, Frigo et al. [10] demon-
strated this protection can be overcome by using multi-sided
hammering patterns that overwhelm the activation count
samplers. Another approach is to increase the DRAM refresh
rate, which shortens the vulnerability window for bitflips.
However, this approach introduces substantial performance
and energy overhead.
Rowhammer attacks have typically been demonstrated

from low-privileged code running on the target machine, and
in various scenarios such as from virtual machines [4, 41]
and browsers [7, 9, 14]. These make up the typical software-
based attacks, illustrated in 3 of Figure 1.

1

ar
X

iv
:2

50
9.

11
44

0v
2

 [
cs

.C
R

]
 1

7
Se

p
20

25

https://arxiv.org/abs/2509.11440v2

There have also been a few Rowhammer demonstra-
tions from peripherals, namely Nethammer [24] (invoking
software-based accesses through NICs), Throwhammer [34]
(exploiting RDMA), and JackHammer [37] (through hetero-
geneous CPU-FPGA platforms). We presume the first two
use network devices connected through PCIe lanes, though
neither of the works explicitly mention it. All of these works
use double-sided hammering, finding that to be sufficient
against the targeted systems which mostly use DDR3 system
memory. However, among these past works, only Netham-
mer overcomes a form of TRR in DDR4, albeit one that is
susceptible to double-sided hammering.
Given the advent of modern DDR4 systems against

which only multi-sided hammering is an effective means
of inducing bitflips, in this paper we primarily set out to
investigate the feasibility of mounting Rowhammer against
these systems using peripherals. To our knowledge, no
previous work has demonstrated this capability. Moreover,
we explore whether such hammering is possible via generic
PCIe connections, including PCIe tunnelled through external
Thunderbolt ports. This lends the approach to a variety of
device configurations and exploitable scenarios, since hosts
generally allocate memory differently depending on the
attached device type. Thunderbolt compatibility also makes
for a considerably relaxed physical access threat model,
where an attacker does not need to open the target machine
for direct access to the motherboard. In this paper we ask
the following questions:

Can Rowhammer be mounted by PCIe peripherals against
modern DDR4 systems where multi-sided hammering is
necessary to overcome TRR? Could off-the-shelf devices be
used for such attacks? Can hammering functionality be built
into generic PCIe and Thunderbolt peripheral devices?

1.1 Our Contribution
In this paper we show that multi-sided Rowhammer against
modern DDR4 from generic peripherals is possible when
using specifically tuned hammering patterns. We propose
Thunderhammer, an attack wherein an adversary that
only has control over a generic device connected through
PCIe or Thunderbolt can cause Rowhammer bitflips, thereby
violating security guarantees predicated on memory isola-
tion. In principle, this opens the possibility of circumvent-
ing memory isolation mechanisms that IOMMU enforce for
peripherals. We illustrate the Thunderhammer attack vec-
tors 1 / 2 in Figure 1, distinguishing them from typical
software-mounted attacks 3 .
As a result, Thunderhammer demonstrates the potential

for memory isolation breakout by malicious PCIe and Thun-
derbolt peripherals against a wider range of targets. This
makes an already dangerous attack even more powerful,

as through Thunderbolt (USB-C connector), Rowhammer
inherits the classic malicious-USB threat model.
Summary of Contributions. In this work, we make the
following contributions:
• We demonstrate Rowhammer against DDR3 targets using
simple, off-the-shelf software-controllable PCIe devices
both connected via a PCIe slot and a Thunderbolt 2 port

• We build a custom PCIe hammering device capable of
issuing memory requests with precise timing, and of mon-
itoring a target’s memory controller throttling behaviour

• Using our custom device hardware, we investigate the in-
teraction of our hammering request flows with the buffer-
ing mechanisms of a DDR4 target memory controller

• We successfully demonstrate Rowhammer using multi-
sided hammering against DDR4 targets via both a PCIe
slot and a Thunderbolt 3 port, enabled by carefully tuned
access patterns derived from our analysis

Our custom device hardware design is openly available at:
https://github.com/0xADE1A1DE/Thunderhammer

2 Background
2.1 PCI Express and Thunderbolt
PCI Express (PCIe) is the standard protocol used to connect
peripheral devices to CPUs from manufacturers including
Intel, AMD, and ARM. PCIe inherits compatibility from the
earlier PCI standard. Architecturally, PCIe functions as a
high-speed serial network, supporting point-to-point con-
nections. The PCIe protocol consists of three primary layers:
the Physical Layer, the Data Link Layer, and the Transaction
Layer. In Thunderhammer attacks, our peripheral devices at-
tack the host by accessing main memory at a high frequency
using crafted Transaction Layer Packets (TLPs).
Data transmission within PCIe is credit-based to ensure

efficient flow control. Additionally, a single upstream node
(such as the CPU) can connect to multiple downstream nodes
(peripheral devices). To facilitate this, PCIe switches or Plat-
form Controller Hubs (PCH) may be integrated onto the
motherboard, providing connections to numerous down-
stream peripherals.
Thunderbolt. Initiated by Intel and Apple, Thunderbolt is a
high-speed interface widely deployed in modern laptops and
compact desktops, and since Thunderbolt 3 it has adopted
the USB-C connector, which integrates PCIe, DisplayPort,
USB, and power delivery into a versatile single-cable solu-
tion. Beginning with Thunderbolt 3, it offers up to 40Gb/s
of bidirectional bandwidth by multiplexing multiple proto-
cols—including four lanes of PCIe 3.0 (up to 32Gb/s total),
USB 3.1 at 10Gb/s, and DisplayPort 1.2 video streams over a
single USB-C cable [35].
IOMMU. PCIe peripherals communicate with the host via
four primary mechanisms: (1) port-mapped I/O (PMIO), using
in/out instructions in x86 to access a separate I/O address
space which is a legacy approach unavailable on ARM or

https://github.com/0xADE1A1DE/Thunderhammer

RISC-V (2) MMIO (memory-mapped I/O), the predominant
method, in which peripheral registers are mapped into the
CPU’s physical memory space and accessed through normal
load/store instructions [39]; (3) DMA (direct memory access),
configured via MMIO, which enables PCIe peripherals to
transfer data directly to or from system memory without
CPU intervention, freeing the CPU to perform other tasks
while the transfer is ongoing; (4) Interrupts, allow PCIe pe-
ripherals to asynchronously notify the CPU of events, such
as the Completion of a DMA transfer, using either interrupt
lines or Message-Signalled Interrupts (MSI).

With DMA support, a malicious or compromised PCIe pe-
ripheral can potentially access the entire physical memory,
even if only certain DMA regions were intended for use. An
attacker could thus steal sensitive data or inject harmful code
into the system. To mitigate such DMA attacks, modern plat-
forms employ an Input–Output Memory Management Unit
(IOMMU) [6]. The mechanism of an IOMMU is similar to
that of a Memory Management Unit (MMU). While an MMU
ensures that a process can only access physical memory ad-
dresses mapped to its own virtual address space, an IOMMU
ensures that a peripheral device can only access host physi-
cal addresses mapped explicitly to its device address space.
IOMMU support is provided by all major CPU vendors: Intel
VT-d (Virtualisation Technology for Directed I/O), and ARM
System Memory Management Unit (SMMU).
Attacks on PCIe and Thunderbolt. Invisible Probe [33] is
an PCIe side-channel attack based on traffic contention. By
timing the variance of IO latency cased by PCIe traffic, the
attackers could capture website fingerprint and password
keystrokes.
Launched from a Thunderbolt peripheral, Thunder-

clap [26] exploits vulnerabilities in IOMMU misconfigura-
tion, potentially leading to secret leakage and arbitrary code
execution. Thunderspy [28] also leverages a Thunderbolt
device to attack Thunderbolt Security Levels. In contrast,
Thunderhammer focuses on triggering Rowhammer attacks
from a Thunderbolt peripheral.

2.2 DRAM
Dynamic Random-Access Memory (DRAM) is organised hi-
erarchically into channels, ranks, banks, rows, and columns.
A channel contains multiple ranks, and each rank is further
divided into multiple banks. Within a bank, data is stored
in a two-dimensional array of cells, with each cell holding
a single bit. To access data, an entire row must first be ac-
tivated and loaded into the row buffer, which is private
to each bank. Only when a row is present in the row buffer
can column-level accesses be performed. The memory con-
troller orchestrates the scheduling and ordering of DRAM
commands. A typical access sequence, when the desired row
is not already open, proceeds as follows:

PRE → ACT → RD → PRE

In the above process, a PRE (precharge) command closes any
previously open row and prepares the bank. An ACT (activate)
command then loads the target row into the row buffer. Once
active, a RD (read) command retrieves data from the specified
column. A subsequent PREmay be issued to close the row and
ready the bank for another access. For writes, the sequence
is similar but uses a WR (write) command instead of RD. If
consecutive accesses target the same open row, the controller
can bypass the initial PRE/ACT steps, reducing latency and
improving throughput. This condition is known as a row
hit. Conversely, if a different row in the same bank must
be accessed, the controller issues a precharge followed by
activation, leading to a row conflict.

2.3 Rowhammer
The continued down-scaling of semiconductor technology
has made DRAM cells smaller and packed closer together,
making themmore susceptible to electrical interference from
nearby cells, which caused disturbance errors and Rowham-
mer attacks [27]. Typical DDR3 Rowhammer attacks can be
launched by repeatedly activating one or two rows adjacent
to a victim row, known as single-sided and double-sided
Rowhammer attacks [22, 30].
For DDR4 DIMMs, simple single-sided or double-sided

Rowhammer attacks are ineffective due to the Target Row
Refresh (TRR) mechanism, which monitors aggressor rows
and refreshes potential victim rows. TRRespass [10] was the
first to propose many-sided attacks, which use multiple ag-
gressor rows to exploit the fact that TRR can only track a
limited number of them. Building on this line of research,
Blacksmith [19] exploits non-uniform aggressor row access
patterns to uncover additional bitflips. SledgeHammer [21]
further accelerates Rowhammer bitflips on DDR4 by lever-
aging bank-level parallelism.

Beyond Rowhammer attack from the CPU side, there are
also Rowhammer attacks based on PCIe peripherals. Jack-
Hammer [37] take advantage of an FPGA to attack a host
computer by launching Rowhammer attacks and covert chan-
nel attacks. However, in JackHammer, the host–peripheral
interaction is handled through a dedicated software stack,
specifically, the Open Programmable Acceleration Engine
(OPAE), rather than via raw TLP packets.

Nethammer [24] induces Rowhammer bitflips via a Net-
work Interface Card (NIC), relying on the assumption
that the host’s network stack uses uncached memory or
performs cache flushes (e.g., via clflush) when process-
ing incoming packets. Targeting specific application, i.e.,
RDMA-memcached, Throwhammer [34] can induce bitflips
via RDMANICs and is capable of bypassing IOMMUmemory
isolation. The recent GPUHammer study [23] demonstrates
bitflips on a GPU device, successfully compromising the
NVIDIA A6000 GPU using user-level CUDA code.
In addition, RowPress [25] is another variant of memory

attacks that shares mechanisms with Rowhammer. Instead

of repeatedly activating aggressor rows, RowPress keeps the
aggressor row open for an extended period to amplify read
disturbance, which can also induce bitflips in DDR4 systems.

3 Hammering with Simple PCIe Devices
We investigate the viability of triggering Rowhammer bit-
flips using simple approaches with off-the-shelf PCIe and
Thunderbolt devices. We consider a scenario wherein an
attacker only has control over a device that is physically
plugged in to a target machine, but no direct control over
code executed on the target machine. As shown in Figure 1,
the attack device connects to a target machine in one of two
ways: 1 a PCIe slot on the motherboard, or 2 an origi-
nal Thunderbolt port or a USB Type-C port that supports
Thunderbolt. For 2 we note that the system must support
tunnelling PCIe through Thunderbolt, which is common.

Aside from regular PCIe device functions, the attack device
performs a malicious, but permitted function of transmitting
PCIe requests to memory within its allocated region. The
attack device sends these requests at a high frequency to
cause memory accesses in a hammering pattern that triggers
Rowhammer bitflips at memory locations outside of its allo-
cated region to manipulate inaccessible data, thus violating
security guarantees predicated on memory isolation. The
functionality responsible for mounting our attack is compat-
ible with those being built into regular devices, alongside
their normal function.

We first attempt to induce bitflips using off-the-shelf con-
trollable PCIe devices, with some basic modifications. Our
overall aim is to hammer certain aggressor memory locations
by issuing a multitude of Read and/or Write PCIe requests
to those locations. Before presenting our observations, we
describe the experimental setup we use.

3.1 Experimental Setup
Our hammering device is based on the pcileech project [11].
This open-source codebase generates commands to dedicated
PCIe device hardware from its accompanying pcileech-fpga
codebase [12]. We use these commands to read and write
target system memory using DMA over PCIe. Multiple
FPGA-based PCIe devices built specifically for use with the
pcileech codebase have been produced and made commer-
cially available over time. We use the ZDMA [36], which is
one of the most recent devices and has the highest advertised
transfer speeds. The ZDMA operates at PCIe Gen 2 (5Gbps
lanes) and supports up to x4 lanes.
The ZDMA, like most other pcileech-fpga devices, is a

dual-port device. On one side is a PCIe connector that con-
nects the board to a slot on target machine, see Figure 3. The
other control port is a USB connection to a machine running
the pcileech software. As they are provided, these devices are
designed to only support functionality in target machines
with virtualisation and the IOMMU disabled. In other words,

\Control Computer
with PCILeech Software

PCIe-to-Thunderbolt Chassis

ZDMA with Customized-FPGA

Victim Desktop

Thunderbolt

USB-C

Figure 2. Attack setting for Thunderhammer via a Thunder-
bolt port tunnelling PCIe

PCIe-to-Thunderbolt Chassis

USB Thunderbolt

Victim LaptopSimulated Attack Device

USB

Victim Desktop
Simulated Attack Device

PCIe

Motherboard

PCILeech
Software

Customized-FPGA

Thunderhammer via PCIe Slot

Thunderhammer via Thunderbolt Port

PCILeech
Software

Customized-FPGA

Figure 3. Attack Platform Layouts. 1 Thunderhammer via
PCIe slot 2 Thunderhammer via Thunderbolt port tun-
nelling PCIe

the devices can read and modify all system memory using
physical addresses. For the purposes of testing whether the
core mechanism of hammering to trigger bitflips is viable,
we initially run our tests against target systems that have vir-
tualisation disabled. Under this configuration, our memory
requests use the target’s physical addressing.

The pcileech software allows users to issue various types
of commands ranging from low-level individually crafted
Transport Layer Packets (TLPs) to high-level requests e.g.
to dump memory from a certain region (in which case the
software would then handle crafting all of the necessary

TLPs). Ultimately, the control software handles these com-
mands and sends just the necessary TLPs to the pcileech
device, which it will then transmit over PCIe. Among the
available user commands is functionality to request looped
transmission of certain TLPs.
PCIe-to-Thunderbolt. To induce bitflips via Thunder-
bolt, we connect the ZDMA through a PCIe-to-Thunderbolt
expansion chassis. Such devices are widely available and
typically used to connect PCIe devices to computers that
have Thunderbolt ports but no exposed or accessible PCIe
slots on their motherboard, such as laptops.

3.2 Bitflips in DDR3 via PCIe and Thunderbolt
We first experiment with a DDR3 target machine setup. For
an attack from PCIe, we use a Lenovo Thinkcenter desktop
with an Intel Core Intel Core i7-4790 CPU, and 4GB Samsung
M378B5273DH0-CH9 DDR3 system memory, i.e., Desktop2
in Table 1, to which we connect the ZDMA board. We list all
of our target platforms in Table 1. We use a simple double-
sided Rowhammer attack from software [13], verifying that
the setup exhibits Rowhammer-induced bitflips. We then
repeat the attack from PCIe, using the ZDMA board, and
use software to check whether the content of memory has
changed. We confirm the presence of bitflips, indicating that
attack from PCIe is successful.

For the Thunderbolt setup, we use an Apple Mac mini i.e.,
Desktop1 in Table 1, with an Intel Core i7-3615QM CPU, and
4GB Samsung M471B5273DH0-CH9 DDR3 system memory.
This system supports Thunderbolt up to version 2 using a
Mini DisplayPort connector. We connect the ZDMA board
to the built-in Thunderbolt port, using a Sonnet Echo Ex-
press SE II PCIe-to-Thunderbolt expansion chassis [31]. We
repeat the attack steps, confirming first that the system is
vulnerable to software-induced attacks and then that we can
cause bitflips from Thunderbolt. On our target machine, tun-
nelling PCIe through Thunderbolt 2 in this scenario works
irrespective of whether virtualisation is switched on or off.
We find that using our simple approach we can transmit

requests to hammer approximately every 117 ns, putting it
in the same range of performance as Throwhammer [34] and
Nethammer [24] which list their respective access rates as
every ∼114 ns and ∼163 ns.

3.3 Attempting Bitflips in DDR4
Next, we attempt to mount Rowhammer via PCIe and Thun-
derbolt on a DDR4 platform. The machine we target is a Gi-
gabyte Z170X-Gaming 7 machine with an Intel Core i7-7700
CPU, and 8GB Samsung M378A1K43BB1-CPB DDR4 system
memory; listed as Desktop3 in Table 1. We use the current
state-of-the-art Rowhammer fuzzing technique, Multibank
(SledgeHammer) [21] running natively, to profile our target
system through which we find many ground-truth flippy
memory locations and corresponding aggressor patterns.
These patterns include the single-bank case, equivalent to

TRRespass [10] fuzzing. The targeted memory module imple-
ments TRR, and we find that multi-row aggressor patterns
that access at least 8 rows are needed to trigger bitflips.When
simply using the default pcileech software and hardware,
unlike with DDR3, we are unable to trigger DDR4 bitflips.

While pcileech devices like the ZDMA may perform well
in terms of throughput, their system is not geared for header-
heavy flows of many successive PCIe requests with little to
no payload. Rather, the system throughput is maximised
when transferring bulk data in or out with fewer TLP re-
quests of large payload sizes. Since pcileech’s looped TLP
function is performed in the control software, ultimately
all of the individual TLPs containing each memory access
commandmust be sent over USB to the ZDMA for PCIe trans-
mission. This subjects them to various stages of buffering as
they propagate through the USB connection, USB controller,
and other hardware elements before being transmitted over
the PCIe lanes, limiting the overall throughput. As previ-
ously mentioned, we observe transfer rates that let us send
successive individual requests approximately every ∼117 ns.

Looping Transmissions Directly in Hardware. To ad-
dress buffering and bottleneck issues with our approach, we
modify the pcileech-fpga hardware core configured onto our
ZDMA. Specifically, we modify it to loop the intended TLP
transmissions directly in hardware, to the full capability of
the PCIe transceiver built into the ZDMA FPGA. In detail, we
configure the ZDMA to store a sequence of TLPs it receives
from the control software, which we call a batch, and once it
has received the entire sequence it proceeds to repeatedly
transmit the batch in a loop, with the packets within a batch
sent out immediately one after another.

These modifications allow us to maximise the throughput
of header-heavy TLP sequences that are ideal for hammering.
For the 5Gbps Gen 2 transmission rate that the ZDMA is ca-
pable of over x4 lanes, resulting in a speedup of at maximum
just over × 6.5, that amounts to a 64-bit-address Read or
Write TLP every ∼17 ns. This corresponds to a maximum
of just over 3.7 × 106 requests per 64ms DRAM refresh pe-
riod. In the case of a one-to-one relation of TLP requests to
row activations, it would allow us to do hammering with
minimum 50K accesses per aggressor for over 50 aggressors,
assuming we could sustain transmission at this rate.
With these modifications we are still not able to trigger

DDR4 bitflips. Our overall transmission rate should amount
to sufficient row activations to induce bitflips, provided
enough of the TLP requests issued result in unique row acti-
vations. Nevertheless, we observe no bitflips, which means
that something must be limiting our hammering approach.
During the brief periods of max-rate transmission, a large
number of requests arrive in a short period of time. This
heightens the opportunities for any request reordering at
buffering stages, such as reordering performed by memory
controllers to minimise row activations.

4 Memory Controller Reverse Engineering
and Hammering DDR4 Targets

Here, we address the issues with hammering against a DDR4
target system identified in the previous section. We turn
our attention to investigating how we can avoid reordering
effects to maximise the number of row activations caused
by our TLPs for hammering. We consider the influence of
each major element along the chain of connection from our
attacker-controlled PCIe device through to the DRAM row
buffer. As shown in Figure 1, the major components between
the PCIe slot and the target DRAMmodules are the PCIe Root
Complex and theMemory Controller. Tomitigate contention-
related interference on the Root Complex in our investiga-
tion, we perform all of our experiments with no peripherals
connected to the other exposed PCIe slots on the target moth-
erboards, and no devices connected to other Thunderbolt
ports. We note that PCIe as a transport layer can reorder
requests in-flight. However, this is only done according to a
well-defined set of rules which we can overcome. This leaves
us to primarily investigate the Memory Controller and its
interaction with the target DRAM modules.
To better understand how reordering and buffering limit

hammering, we design experiments to reverse engineer cer-
tain functionality and hardware structures within memory
controllers. In these experiments, we use our controllable
PCIe device (ZDMA) as a means of influencing and observ-
ing aspects of the memory controller’s state. This motivates
further modifications to our ZDMA device hardware to in-
corporate the capability of signalling certain events, and
high-precision control over the timing of TLP transmissions.
From our experiments, we find that buffering in certain struc-
tures at the target memory controller significantly impacts
our ability to induce bitflips in DDR4. Using this knowledge
and our modified ZDMA hardware1, we are ultimately able
to demonstrate bitflips in DDR4 targets from both PCIe and
Thunderbolt, using carefully chosen aggressors whose re-
quest transmission timing patterns we tune precisely. We
summarise the optimal timing pattern parameters at the end
of Section 4.4. In our investigation, we target Intel client-
grade CPUs, which affords us both the PCIe and Thunderbolt
attack vectors.

4.1 PCIe Reordering
By default, PCIe maintains a strong ordering model
across Posted (e.g. Writes) and non-Posted (e.g. Reads) re-
quests [16]. Setting a “Relaxed Ordering” attribute in TLPs
allows requests to bypass each other, therefore to avoid this
we ensure the bit is not set in all of our transmitted TLPs.

Conversely, PCIe does not guarantee in-order delivery
of Completion TLPs containing data payloads in response
to Read requests. The PCIe Root Complex may perform

1The source code for our design artefacts is available at
https://github.com/0xADE1A1DE/Thunderhammer

PCIe Root
Complex

System Agent

CPU Interconnect (Ring Bus)CPUs

RPQ WPQ

Channel 1 Channel 2

Integrated Memory Controller

RPQ WPQ

Figure 4. Buffering mechanisms

reordering after it has been passed the data from DRAM.
This reordering is generally for the purpose of prioritising
smaller data packets, so they are not held up by large-payload
Completions. We avoid this as much as possible by crafting
our Read requests with the minimal possible size. However,
we cannot entirely rely on observing the order of return-
ing Completion to infer the order in which the memory
controller issues requests to DRAM.

4.2 Memory Controller Buffering Mechanisms
To facilitate the Thunderhammer attack against targets with
DDR4 system DRAM, we investigate aspects of CPU mem-
ory controllers that influence how memory requests arriv-
ing from PCIe intended for hammering affect the flow of
commands dispatched to DRAM. Our analysis focuses on
the memory controller architecture in Intel Core CPUs. We
initially consult publicly available documentation, then we
conduct targeted experiments to infer the behaviour of un-
documented features that affect our attack.

Figure 4 shows an overview of our system model.
RPQ andWPQ. Memory controllers generally contain sep-
arate queues for incoming read requests and write requests.
According to the Intel Xeon Uncore Performance Monitoring
Manual [15], each memory controller includes a Read Pend-
ing Queue (RPQ) and a Write Pending Queue (WPQ), which
is per channel. Although this manual only describes server-
grade CPUs, we expect that similarly defined elements and
mechanisms are also implemented in their client-grade pro-
cessors. To the best of our knowledge, this is not otherwise
publicly documented for those systems.

In Intel Core CPUs, the typical interconnect is a ring bus,
which connects all CPU cores to the System Agent. The Sys-
tem Agent includes the display controller, PCIe interface,
and memory controller [38]. The memory controller is inte-
grated directly into the CPU die and is therefore commonly
referred to as the Integrated Memory Controller (iMC) [40].
The RPQ and WPQ serve as buffering structures: when

the memory controller receives Read or Write commands
from the cores or PCIe interface, it allocates entries from the
RPQ or WPQ accordingly and later schedules the commands
to DRAM. These queues are credit-based; read or write com-
mands cannot be issued upstream (i.e., from the cores or
PCIe) unless there is space available in the corresponding

https://github.com/0xADE1A1DE/Thunderhammer

queue. Once a slot becomes available (i.e., when a command
is issued to DRAM and the queue entry is deallocated), new
commands can proceed.
Major Modes and Reordering. According to [15], the de-
fault operating mode of the iMC is Read Major Mode. Reads
are typically prioritised over Writes because they are gener-
ally more critical for ensuring forward progress. In contrast,
Write requests follow a posted approach, meaning a Write is
considered complete as soon as it is allocated to the WPQ,
without waiting for the data to physically reach DRAM.

Write Major Mode is activated when the occupancy of the
WPQ reaches a high watermark. In this mode, Write requests
are prioritised over Read requests. Additionally, there are two
other modes, Partial Major Mode and Isoch Major Mode [15],
which fall outside the scope of our investigation.

Beyond reordering between Reads and Writes, reordering
within each group is also possible. Utilising the WPQ, the
iMC allows both Reads and Writes to bypass other Writes
that target different addresses. Before issuing a Read or a
Write, the iMC first checks the WPQ to determine if there is
an existing Write pending for that specific address. If a Read
request matches an entry in theWPQ, the data can be directly
retrieved from the queue instead of accessing main memory.
Similarly, if a Write request matches an existing entry, it
will overwrite that data directly [1, 15]. For each queue, the
memory controller is likely to track several requests using a
look-ahead window that facilitates reordering [18].
By understanding the RPQ/WPQ and major mode mech-

anism, we expect Read operations to be more effective at
triggering Rowhammer bitflips for the following reasons:
First, Read requests are prioritised by default in the Read
Major mode. This is corroborated by the description of
RPQ_CYCLES_FULL, which notes that the RPQ is not expected
to become full, except possibly during Write Major mode or
very slow DRAM [15]. Thus, using Read requests allows for
far more precise control over row activation latency within
memory banks than Write requests. Second, when partial
Writes occur (i.e., the data being written to DRAM does
not span an entire 64-byte unit which is the default gran-
ularity of Writes to DDR4), the memory controller issues
additional underfill Reads to retrieve the existing data to per-
form a read-modify-write [15]. This behaviour complicates
the Rowhammer process, whose goal is to trigger highly ef-
ficient row activations. Although we can issue full-cacheline
Write requests from ZDMA to avoid partial Writes, the use
of larger TLP packets limits our request transmission rate
due to the bandwidth constraints of PCIe. Finally, PCIe Read
requests are non-posted and always force a Completion re-
sponse from the memory system. This minimises the payload
size on Reads transmitted for hammering, so they will have
minimal impact on bandwidth.

Takeaway 1: Read requests of minimal payloads from
PCIe are more effective at triggering Rowhammer bitflips.

4.3 RPQ and WPQ Reordering Properties
The extent to which the memory controller can reorder a
stream of incoming requests depends on five factors:
• the size of its reorder look-ahead window;
• how long requests can remain in the look-ahead window
without being selected (starvation avoidance);

• the relative arrival and service rates;
• the row-level locality; and
• the distribution of accesses across banks.
Among these, arrival/service rates, row locality, and bank dis-
tribution are determined by the access pattern. Conversely,
look-ahead window size and starvation avoidance time are
intrinsic properties of the memory controller’s internal struc-
ture. We aim to infer these latter properties through con-
trolled experiments with specifically crafted access patterns.
Given Takeaway 1, we focus on RPQ hereon.
We model an individual queue as a bounded queue of

depth 𝑁 , with an incoming request arrival rate 𝜆in and a
service rate 𝜇out, see Figure 5. The reorder logic acts across a
look-ahead window of size𝑊 ≤ 𝑁 , scanning up to𝑊 oldest
requests to select the next to be served, delaying some to
group same-row requests while still respecting starvation-
avoidance limits. If 𝜆in > 𝜇out over a sufficient period of time,
the queue will fill. When the queue is full, the system applies
back-pressure that reaches the PCIe root complex, causing
it to throttle peripheral connections. We use observations
of when this throttling occurs for given combinations of 𝜆in,
𝜇out, and access patterns for some of our reverse engineering
experiments.

Figure 5.Memory Controller RPQ flows.

Modifications to Indicate Throttling. To observe throt-
tling as an indicator of an exhausted queue, we modify the
ZDMA hardware to signal back to our control software when
it has been throttled during packet transmission.
With this mechanism, we find that when we loop PCIe

transmissions in hardware, as per our modifications from
Section 3.3, our logic is regularly interrupted by throttling,
after only a few TLP transmissions each time. This is because
the (in-chip) interface to our Xilinx PCIe transceiver core
(PHY) [42] is 128 bits wide and clocked at 125MHz, mean-
ing we can send a 64-bit-address Read TLP (128 bits in
length) every 8 ns. This is faster than the speed that our
x4 5Gbps PCIe Tx lanes support, when factoring in PCIe’s
8b/10b encoding and lower link-layer packet overhead. This
also explains why we arrive at the packet transmission rates
listed in Section 3.3 (one 64-bit-address Read per ∼17 ns).

Modifications for Precise Transmission Intervals. We
further modify the ZDMA hardware to transmit TLPs in a
loop, with well-defined delay intervals between transmis-
sions that we can set per our core’s clock period fidelity of
8 ns. We denote this inter-packet delay within a batch as 𝛿𝑝 .
Figure 6 shows this and the following parameters we de-
scribe. We also introduce a separate configurable inter-batch
delay, 𝛿𝑏 , between transmission of the last request in a batch
and the first in the next batch. This can similarly only be
set according to 8 ns increments. We label the batch period
𝑇𝑏 . Now we can transmit batches of requests in a loop with
precise control over the overall average inter-packet delay of
a stream across many batches, i.e., the direct inverse of the
incoming request arrival rate, which we denote as 𝛿𝑝 = 1/𝜆in.

Figure 6. Packet sequence timing parameters for stream of
repeatedly transmitted batches of PCIe Read requests.

Calibration to Maximum Stable Transmission Rate.
To use our custom ZDMA’s throttling signal as a reliable
indicator of exhausted queues, we need to rule out the false
positives that arise from our Tx lanes being overwhelmed.
We first find the maximum transmission rate that the lanes
can sustain indefinitely, i.e., the absolute maximum 𝜆in we
can use reliably. For that, we repeatedly transmit a single
Read TLP to the same address in a loop for a long period
of time. We use a single Read TLP to avoid exhausting the
queue. We expect repeated requests to the same location to
maximise 𝜇out, since the controller can service many of the
Reads following a single row activation. In such an idealised
scenario, this access pattern would result in the memory
controller issuing an ACT command only once for the first
request. To serve every subsequent request, the controller
issues only one RD command for each. According to the DDR4
JEDEC Standard [2], these can be issued successively every
4 ns for our type of target DIMM, therefore we have a bound
of 𝜇out < 1/(4 ns). We find that transmitting a Read TLP
every 16.2 ns on average (𝛿𝑝 = 16.2 ns) gives the maximum
stable 𝜆in. At this rate there is no throttling related to the PHY
and the capacity of its lanes. The maximum rate we find is
well below our expected service rate upper bound, 𝜇out > 𝜆in,
therefore, we are confident the throttling we observe at this
limit is due to lane capacity and not the queue filling.
RPQReordering Look-AheadWindow. We design an ex-
periment to estimate the size of RPQ’s reordering look-ahead

window (𝑊). As mentioned in Section 4.1, we know that
when we issue Read TLPs from our device, the Completion
TLPs arriving at our device in response can be reordered
by more elements on the chain of connection than just the
memory controller. Since we cannot entirely rely on this for
direct observation of reordering we must combine our analy-
sis with an alternative method. When reordering occurs, the
system can achieve a high 𝜇out, i.e. it can serve requests at a
fast rate. Whereas when there is no reordering, the system
will exhibit worst-case performance, i.e., going through the
entire cycle of opening and closing DRAM rows for each
individual request. Following from this, the core idea of our
approach is to stream in requests and observe the maximum
serviceable request rate (𝜇out). We then use that as a direct
proxy for how much reordering the system is doing on our
stream of requests.
We follow on from our experiment that found the maxi-

mum stable transmission rate, where we repeatedly transmit
one Read TLP to the same address with 𝛿𝑝 = 16.2 ns. We alter
our request pattern to instead send batches of Read TLPs to
progressively larger sets of addresses (𝑅) that access unique
rows within the same bank. Figure 7 shows the minimum
serviceable inter-packet delay 𝛿𝑝 = 1/𝜇out (corresponding to
the maximum service rate 𝜇out), for varying 𝑅.

0 4 8 12 16 20 24 28 32
8 ns

16 ns

24 ns

32 ns

40 ns

48 ns

56 ns

64 ns

Worst-case threshold 𝑡𝑅𝐶

No. of requests to unique rows in batch (𝑅)

M
in
.a
vg
.i
nt
er
-p
ac
ke
td

el
ay

𝛿
𝑝

Figure 7. Maximum serviceable rate (inverse of 𝛿𝑝) for
batches of PCIe Read requests to 𝑅 unique rows in one bank.

In the worst-case scenario where there is no performance
benefit from reordering, for large 𝑅 we expect each request to
be served by a full PRE→ ACT→ RD→ PRE sequence. Such
a cycle is constrained by 𝑡𝑅𝐶 , which is the minimum interval
between ACTs in a bank [2]. For our target DIMM, this value
is 46.75 ns [29], which explains why any 𝑅 greater than those
shown in the figure is also serviceable with 𝛿𝑝 ≈ 50 ns. We
mark the 𝑡𝑅𝐶 threshold on Figure 7.

On Figure 7 we immediately identify the abrupt jump from
𝑅 ≥ 22 where performance degrades to the worst-case with
𝛿𝑝 > 𝑡RC. From this, we infer that the look-ahead window

spans up to 21 entries. For 𝑅 ≤ 21 we see a linear drop until
𝑅 = 8, and we note that performance values for 𝑅 < 8 are
limited by our ZDMA PCIe connection bottleneck, as they
are at the maximum stable transmission rate we previously
found. We expect this drop to continue below 𝑅 < 8.

Although observing the order of Completions received in
response to Read requests is not an entirely reliable indicator
of memory controller reordering, our observations with this
method corroborate our findings to this point. Moreover,
using similar observations of Completions for batch sizes
susceptible to reordering (𝑅 ≤ 21), we find that if we increase
the inter-packet transmission interval 𝛿𝑝 , we observe a sharp
transition when it goes beyond the per-bank activation cycle
time 𝑡RC where no reordering occurs for all 𝑅.

Takeaway 2: Sending successive PCIe requests with time
intervals between each that are larger than the per-bank ac-
tivation cycle time avoids reordering of memory requests.

Multi-Bank Look-Ahead. We repeat the same experiment,
this time with batches that access 𝑅 unique rows in each of
𝐵 = 2 different banks. In this situation, the controller can
leverage bank-level parallelism, which for 𝐵 = 2 we expect to
roughly halve the worst-case performance scenario to take
∼23.375 ns (= 𝑡𝑅𝐶/𝐵). The results, in Figure 8, show a similar
jump in serviceable interval for total accesses 𝐵 × 𝑅 = 22
(where 𝑅 = 11). The slight drop for 𝑅 = 11, compared to
the flat line above the worst case performance threshold for
𝑅 > 11 can be explained by one of the bank’s access patterns
occasionally benefiting from reordering, corresponding to
the 𝐵 × 𝑅 = 21 case in Figure 7. Overall, this experiment
confirms that the look-ahead buffer is not per-bank, but
rather acts across the entirety of RPQ. We confirm this by
repeating the experiment across banks in the same bank
groups, and in different bank groups.
We similarly confirm these findings with observations

of the returning Completion flow. Curiously, however, we
find that if the two banks are in different bank groups there
appears to be reordering evident in the order of returning
Completions for 𝑅 up to 25. Nevertheless, this reordering
does not correspond to an increase in performance, and in
this case, we see the same results as in Figure 8. We addition-
ally confirm the findings summarised in Takeaway 2.

Takeaway 3: The look-ahead window acts across all banks
and can perform reordering on up to 21 entries.

4.4 Bitflips in DDR4 via PCIe
By using the ZDMA device with our modifications described
in the previous sections, along with hammering transmis-
sion strategies that we found could avoid reordering, we are
able to induce bitflips in targets with DDR4 system DRAM.
Specifically, we achieve this using the (multi-sided) Multi-
bank hammering access patterns [21] with a large number
of aggressors that we profiled from software.

0 4 8 12 16 20 24 28
8 ns

12 ns

16 ns

20 ns

24 ns

28 ns

32 ns

Worst-case threshold 𝑡𝑅𝐶/2

No. of requests to unique rows (𝑅) per bank in batch

M
in
.a
vg
.i
nt
er
-p
ac
ke
td

el
ay

𝛿
𝑝

Figure 8. Maximum serviceable rate (inverse of 𝛿𝑝) for
batches of PCIe Read requests to 𝑅 unique rows to two banks.

To recap, Multibank (from Sledgehammer [21]) is primar-
ily based on TRResspass [10], which overcomes TRR coun-
termeasures found in most DDR4 by performing multi-sided
hammering that overwhelms the samplers keeping track
of frequently accessed rows. Multibank further improves
on this by exploiting bank-level parallelism, which enables
hammering across multiple banks 𝐵 at a rate constrained
by ∼𝐵/𝑡RC instead of ∼1/𝑡RC. This has two overall beneficial
effects: parallelising bitflip location search essentially “for
free”; and for 𝑅 < 𝑊 , filling the look-ahead window with
other entries that minimise reordering, amounting to more
effective per-bank aggressor sets. In the case of our target
system, our experiments in Section 4.3 show that the latter
effect benefits any patterns with 𝑅 < 22, provided this is in
combination with 𝐵 > 1. Our modified ZDMA hardware is
well suited to take advantage of these effects for up to 𝐵 ≤ 3,
as from what we found, our ZDMA device’s maximum trans-
mission rate (1/𝛿𝑝 = 1/(16.2 ns)) which is close to the 3-bank
hammering constrained rate of 𝐵/𝑡RC = 3/(46.75 ns).
Optimal Hammering Timings For PCIe. We update
our hammering-over-PCIe approach targeting DDR4 from
Section 3.3 to investigate various combinations of timing
parameters, guided by our findings on how we can avoid
reordering from the previous section. Namely, in accordance
with Takeaway 2, we transmit our batch of 𝐵 × 𝑅 aggressor
PCIe Read TLP requests such that the average inter-packet
delay results in a request rate that is slightly above the ser-
viceable rate: 𝛿𝑝 > 𝐵/𝑡RC.

We use the same aggressor sets profiled with Multibank
from software. Of the evaluated combinations of parameters,
we measure the “goodness” of each one by the number of
profiled bitflips observed which we can reproduce via PCIe.
Initially, when we attempt to hammer with 𝛿𝑝 just over

𝐵/𝑡RC, and no inter-batch delay, i.e., 𝛿𝑝 = 𝛿𝑝 we cannot
observe any bitflips. However, once we introduce some inter-
batch delay 𝛿𝑏 > 0 we finally observe bitflips in victim rows.

Specifically, as we increase this value we observe a spike
in the number of bitflips induced right at the transition of
𝛿𝑏 > 2 × 𝑡RC (similarly 𝑇𝑏 ≥ (𝐵 × 𝑅 + 1) × 𝑡RC). We suspect
the extra delay of one 𝑡𝑅𝐶 period (responsible for the +1
term) serves as a buffer drain relief and/or noise resilience
period. This threshold is crucial for attack performance and
appears to be constant as the same holds for any overall size
of aggressor set (𝐵 × 𝑅) we use, and similarly for any bank
cardinality 𝐵 of the set.

Moreover, we find that if we keep 𝛿𝑏 above the mentioned
threshold and reduce 𝛿𝑝 such that we still satisfy our reorder-
ing prevention condition: 𝛿𝑝 > 𝐵/𝑡RC (which is possible due
to the added 𝛿𝑏), we further increase the number of bitflips
induced. The number of bitflips rises as 𝛿𝑝 shrinks until it
passes below: 𝛿𝑝 < 𝑡RC/𝐵. By reducing the inter-packet delay
just below this point, we ensure that the requests arrive at
the memory controller in a burst such that we maximise ACT
rate. With further reduction below this point, we do not find
there to be any attack performance improvement.

An inter-packet delay 𝛿𝑝 of just below 𝑡RC/𝐵 corresponds
to a request rate that is slightly faster than the maximum
possible service rate that has an ACT for each request, this
ensures that requests reach the memory controller in a burst.

To summarise, wemaximise the number of bitflips induced
from hammering over PCIe when the timing of our aggressor
transmissions meets the following three conditions:

1. 𝛿𝑝 > 𝐵/𝑡RC: Reordering prevention
2. 𝛿𝑏 > 2 × 𝑡RC: Noise robustness
3. 𝛿𝑝 < 𝑡RC/𝐵: Maximising ACT burst rate within a batch

The best combinations we find can generally appear to
reproduce all profiled bitflips.

4.5 Bitflips in DDR4 via Thunderbolt
We successfully reproduce a majority of the same bitflips in
DDR4 targets when tunnelling our PCIe connection through
Thunderbolt. In our setting, we use a Startech Thunderbolt 3
PCIe Expansion Chassis (TB31PCIEX16) which has a x16 lane
PCIe Gen 3 (8Gbps lanes) slot [32]. However, due to Thun-
derbolt only using x4 lanes, our ZDMA connected through
this chassis maximises lane utilisation.
PCIe tunnelling through Thunderbolt appears to be an

optional feature for systems to support. The DDR4 system
we target, i.e., Desktop3 (Table 1), supports Thunderbolt 3.

Overall, we find that the attack tunnelled through Thun-
derbolt can reproduce roughly 80% of the bitflips found with
PCIe hammering. Though there is some degradation in attack
performance, our findings suggest that the intermediate chas-
sis used for tunnelling does not impose an attack-inhibiting
influence on PCIe request stream sent out for hammering.

5 Evaluation
5.1 Platforms
Table 1 summarises all DDR3 and DDR4 platforms we ex-
periment on. Among them, Desktop1 and Desktop3 support
Thunderbolt, which is a common feature on modern laptops.
For Thunderbolt chassis, our DDR3 setup uses the Sonnet
Echo Express SE II, while the DDR4 setup uses the Startech
Thunderbolt 3 PCIe Expansion Chassis, both of which are
also discussed in Section 3 and Section 4. Although we ex-
plored both DDR3 and DDR4 systems, our evaluation hereon
focuses on DDR4 systems, which are more widespread and
for which bitflips are harder to trigger.

5.2 Case Study with IOMMU enabled
Our investigation until this point primarily focuses on the
practicality of generic PCIe and Thunderbolt peripherals
serving as an attack vector for Rowhammer. Having demon-
strated the feasibility of this approach, we now extend our
analysis to investigate whether bitflips induced from PCIe
and Thunderbolt accesses are still possible on systems with
memory virtualisation and the IOMMU enabled. Until now,
our testing involved direct interaction with physical mem-
ory addresses, with memory virtualisation disabled in our
targets. This adds two more potential stages of processing
between our source of hammering PCIe requests and the
targeted DRAM. Namely, the host must translate the vir-
tual addresses of incoming requests to the corresponding
physical memory addresses, then its IOMMU must perform
necessary bounds checks. We find that even under these
circumstances, we can cause bitflips, which indicates that
neither of these extra stages inhibit Rowhammer.

When memory virtualisation and the IOMMU are enabled
in a host system, any device connecting over PCIe must
be explicitly allocated a memory region on the host which
it can read and write to. Soon after device connection or
system startup, once the device driver is loaded and has
been allocated a region for device DMA, the driver passes
the region base address and size to the device. The host
communicates this by writing to one of the device’s Base
Address Registers (BAR). As we mention earlier, pcileech
does not support operation on systems with virtualisation
enabled. The reason for this is the codebase does not support
reading out the data that hosts write to the device BARs. We
further modify our custom ZDMA hardware to enable BAR
readout using the pcileech control software.
Setup. To demonstrate Thunderhammer works under
IOMMU protection, we enable virtualisation and the IOMMU
by enabling VT-d in BIOS and updating the GRUB configu-
ration with the line intel_iommu=on. For simplicity in test-
ing, we create a custom kernel-space driver on the host to
first enable our ZDMA device connection through Thunder-
bolt. Using dma_declare_coherent_memory we then allo-
cate the DMA regions that correspond to aggressor rows

Table 1. Specifications of DDR3 and DDR4 Platforms

Platform CPU Model Motherboard Memory Size/Model TB
Desktop1 Intel Core i7-3615QM Apple Inc. Mac-F65AE981FFA204ED 4GB DDR3 / M471B5273DH0-CH9 Yes
Desktop2 Intel Core i7-4790 LENOVO SHARKBAY SDK0E50510 4GB DDR3 / M378B5273DH0-CH9 No
Desktop3 Intel Core i7-7700 Gigabyte Z170X-Gaming 7 8GB DDR4 / M378A1K43BB1-CPB Yes

through which we previously found hammering could cause
bitflips. Next, we allocate the DMA region to the device with
dma_alloc_coherent, which handles writing the region ad-
dress offset and size to the device BAR. Finally, our driver
enables the DMA area. We use code running on the host to
observe whether the victim rows, which are outside of the
device’s allocated region, experience any bitflips.
Bitflip Reproduction Using PCIe and Thunderbolt. Af-
ter driver initialisation, we attempt to hammer with our
customised ZDMA by sending Read TLP packets to the host
machine. We similarly find approximately 80% of bitflips
found to be reproducible with this approach.
Thunderhammer and Software-based Mitigation. Sev-
eral Rowhammer mitigation schemes are geared to thwart
hammering from software by monitoring potentially ma-
licious memory access patterns [43], or attack detection
by monitoring performance counters [3, 30]. In such cases
where code running on the host is unable to hammer, a
malicious driver in collusion with Thunderhammer may be
capable of mounting attacks.

6 Limitations, Future Work and
Countermeasures.

6.1 Using Newer PCIe Generations.
We expect that adopting our attack approach to newer PCIe
generation devices will increase the attack effectiveness. In
our attacks we use our modified ZDMA device that con-
nects over x4 lanes of PCIe Gen 2, each of which operates at
5Gbps. As we discuss in Section 4.4, this device can trans-
mit a Read TLP every 16.2 ns on average. This is well below
𝑡𝑅𝐶 , which allows us to maximise the effective approach for
single-bank hammering. This is close to the 3-bank ham-
mering constrained rate 𝐵/𝑡RC = 3/(46.75 ns), so the attack
can leverage Multibank hammering for bank cardinality 𝐵

up to 3. However, Thunderbolt versions 3 and 4 utilise x4
PCIe Gen 3 lanes for tunnelling, which each have a bitrate of
8 Gbps. We expect using a PCIe Gen 3 device to increase the
effectiveness of Multibank hammering for higher bank car-
dinality. Similarly, we expect further benefits for the direct
PCIe slot attack approach, similar function can be built-in to
either a device from a much more recent PCIe generation (4
or 5) or devices with more lanes, e.g. x16, can be used.
Crucially, we expect these improvements to carry into

newer generations of all the technologies such as PCIe Gen-
erations 6.0 and onward, whose transmission rates are over
an order of magnitude greater than those we experiment

with. This may have implications on the security of more
robust, recent memory systems such as DDR5. We leave
the development of hammering devices using newer PCIe
generations to future work.

6.2 Attacks on Server-Grade CPUs
Our study focuses on Thunderhammer attacks targeting
client-grade CPUs, i.e., Intel Core machines. We expect that
these attacks may not directly transfer to server-grade CPUs,
such as Intel Xeon machines. These systems serve PCIe-
initiated memory accesses from Last-Level Cache (LLC) us-
ing mechanisms like Data Direct I/O (DDIO) [17].
Unlike software-initiated memory accesses on the CPU

side, there is no mechanism for flushing the cache, such as
with a clflush instruction, from a PCIe connection. How-
ever, we expect that by constructing and accessing eviction
sets, our Thunderhammer approach may also be adaptable
to attacking these platforms. We leave the investigation of
attacks on server-grade CPUs to future work.

6.3 Mitigations.

General Rowhammer Mitigations. Strategies effective
against conventional Rowhammer attacks may mitigate
Thunderhammer to some extent. Although ECC cannot fully
mitigate Rowhammer, it could significantly reduce bitflips.
Based on ECC, Copy-on-Flip[8] proposes a software-based
solution that migrates the victim data to new memory pages.
Moreover, some DRAM modules are more susceptible to

Rowhammer-induced bitflips than others, as disclosed in
previous studies [10]. Thus, for systems running critical ap-
plications, defenders can avoid DRAM chips known to be
vulnerable. Besides, they can actively identify vulnerable
chips by searching for bitflips using tools such as Black-
smith [19], BitMine [44], and Rowhammer-test [13].

Another straightforward Rowhammermitigation is to dou-
ble the DRAM refresh frequency, which reduces the likeli-
hood of disturbance errors. However, this approach increases
power consumption and introduces performance overhead,
making it a trade-off. This solution has already been adopted
in DDR5, where the refresh interval was reduced from 64 ms
to 32 ms [20].
Limiting TLP Request Rates. To mitigate Thunderham-
mer, we can also introduce mechanisms to limit the TLP
request rate of PCIe peripherals, especially suspicious ones.
Such a mechanism could be implemented in the PCIe Root
Complex or PCIe switches. Note that even if the request

rate is limited, the bandwidth can remain unchanged, as a
peripheral may send fewer TLPs with larger payloads.

7 Conclusions
In this work, we present Thunderhammer, the first general
PCIe- and Thunderbolt-based Rowhammer attack capable of
inducing DRAM bitflips in modern DDR4 targets. By assess-
ing how memory access patterns are influenced by memory
controller buffering, we show that carefully timing-tuned
PCIe transactions can reliably launch Rowhammer attacks
on DDR3 and DDR4 systems. This previously unexplored
peripheral-based vector broadens the Rowhammer threat
surface and underscores the need for Rowhammer defences
against a wide range of attack vectors.

Acknowledgements
This work was supported by an ARC Discovery Project num-
ber DP210102670; the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2092 CASA - 390781972; and the
National Science Foundation (Grant No. CNS-2145744).

References
[1] Matteo Andreozzi, Antonio Frangioni, Laura Galli, Giovanni Stea, and

Raffaele Zippo. 2022. A MILP approach to DRAM access worst-case
analysis. Computers & Operations Research 143 (2022), 105774.

[2] JEDEC Solid State Technology Association. 2020. JESD79-4C: DDR4
SDRAM Standard. Revision of JESD79-4B, June 2017.

[3] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. 2016. ANVIL:
Software-based protection against next-generation rowhammer at-
tacks. ACM SIGPLAN Notices 51, 4 (2016), 743–755.

[4] Wei Chen, Zhi Zhang, Xin Zhang, Qingni Shen, Yuval Yarom, Daniel
Genkin, Chen Yan, and Zhe Wang. 2025. HyperHammer: Breaking
free from KVM-enforced isolation. In ASPLOS. 545–559.

[5] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
2019. Exploiting correcting codes: On the effectiveness of ECCmemory
against Rowhammer attacks. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 55–71.

[6] Wikipedia contributors. 2025. Input–output memory manage-
ment unit. https://en.wikipedia.org/wiki/Input%E2%80%93output_
memory_management_unit Accessed: 2024-07-04.

[7] Finn De Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. [n. d.]. SMASH: Synchronized
many-sided Rowhammer attacks from JavaScript. In USENIX Security.
1001–1018.

[8] Andrea Di Dio, Koen Koning, Herbert Bos, and Cristiano Giuffrida.
2023. Copy-on-Flip: Hardening ECC Memory Against Rowhammer
Attacks.. In NDSS.

[9] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.
Grand pwning unit: Accelerating microarchitectural attacks with the
GPU. In IEEE SP. 195–210.

[10] Pietro Frigo, Emanuele Vannacc, Hasan Hassan, Victor Van Der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020.
TRRespass: Exploiting the many sides of target row refresh. In IEEE
SP. 747–762.

[11] Ulf Frisk. 2025. PCILeech. https://github.com/ufrisk/pcileech. Ac-
cessed: 2025-06-16.

[12] Ulf Frisk. 2025. pcileech-fpga. https://github.com/ufrisk/pcileech-
fpga.

[13] Google. 2015. rowhammer-test. https://github.com/google/
rowhammer-test. Accessed: 2025-07-23.

[14] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016.
Rowhammer. js: A remote software-induced fault attack in JavaScript.
In International conference on detection of intrusions and malware, and
vulnerability assessment. Springer, 300–321.

[15] Intel Corporation. 2017. Intel Xeon Processor Scalable Memory Family
Uncore Performance Monitoring Reference Manual. https://kib.kiev.ua/
x86docs/Intel/PerfMon/336274-001.pdf

[16] Intel Corporation. 2019. Receive Buffer Reordering. https://www.intel.
com/content/www/us/en/docs/programmable/683093/15-1/receive-
buffer-reordering.html Accessed: 2025-08-17.

[17] Intel Corporation. 2021. Intel Data Direct I/O Technology.
https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html Accessed: 2025-08-05.

[18] Intel Corporation. 2023. External Memory Interface Handbook,
Volume 2: Design Guidelines – Command Queue Look-Ahead Depth.
Intel Corporation. https://www.intel.com/content/www/us/en/
docs/programmable/683385/17-0/command-queue-look-ahead-
depth.html Section 11.2.5.

[19] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. 2022. Blacksmith: Scalable Rowhammering in the fre-
quency domain. In IEEE SP. 716–734.

[20] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej
Bölcskei, and Kaveh Razavi. 2024. ZenHammer: Rowhammer Attacks
on AMD Zen-based Platforms. In USENIX Security. 1615–1633.

[21] Ingab Kang, Walter Wang, Jason Kim, Stephan van Schaik, Youssef
Tobah, Daniel Genkin, Andrew Kwong, and Yuval Yarom. 2024. Sledge-
Hammer: Amplifying Rowhammer via Bank-level Parallelism. In
USENIX Security. 1597–1614.

[22] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014.
Flipping bits in memory without accessing them: An experimental
study of DRAM disturbance errors. ACM SIGARCH Computer Archi-
tecture News 42, 3 (2014), 361–372.

[23] Chris S. Lin, Joyce Qu, and Gururaj Saileshwar. 2025. GPUHammer:
Rowhammer Attacks on GPU Memories are Practical. In USENIX
Security.

[24] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster,
Misiker Tadesse Aga, Clémentine Maurice, and Daniel Gruss. 2020.
Nethammer: Inducing rowhammer faults through network requests.
In IEEE EuroS&P. IEEE, 710–719.

[25] Haocong Luo, Ataberk Olgun, Abdullah Giray Yağlıkçı, Yahya Can
Tuğrul, Steve Rhyner, Meryem Banu Cavlak, Joël Lindegger, Moham-
mad Sadrosadati, and Onur Mutlu. 2023. Rowpress: Amplifying read
disturbance in modern DRAM chips. In ISCA. 1–18.

[26] A Theodore Markettos, Colin Rothwell, Brett F Gutstein, Allison
Pearce, Peter G Neumann, Simon W Moore, and Robert NM Wat-
son. 2019. Thunderclap: Exploring vulnerabilities in operating system
IOMMU protection via DMA from untrustworthy peripherals. (2019).

[27] Onur Mutlu and Jeremie S Kim. 2019. Rowhammer: A retrospective.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39, 8 (2019), 1555–1571.

[28] Björn Ruytenberg. 2022. When lightning strikes thrice: breaking Thun-
derbolt security. Ph. D. Dissertation. Master’s thesis, Eindhoven Uni-
versity of Technology.

[29] Samsung. 2018. Serial Presence Detect M378A1K43BB1-CPB00.
https://download.semiconductor.samsung.com/resources/data-
sheet/M378A1K43BB1-CPB00.pdf Accessed: 2025-08-19.

[30] Mark Seaborn and Thomas Dullien. 2015. Exploiting
the DRAM Rowhammer Bug to Gain Kernel Privileges.
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-

https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://en.wikipedia.org/wiki/Input%E2%80%93output_memory_management_unit
https://github.com/ufrisk/pcileech
https://github.com/ufrisk/pcileech-fpga
https://github.com/ufrisk/pcileech-fpga
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://kib.kiev.ua/x86docs/Intel/PerfMon/336274-001.pdf
https://kib.kiev.ua/x86docs/Intel/PerfMon/336274-001.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683093/15-1/receive-buffer-reordering.html
https://www.intel.com/content/www/us/en/docs/programmable/683093/15-1/receive-buffer-reordering.html
https://www.intel.com/content/www/us/en/docs/programmable/683093/15-1/receive-buffer-reordering.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/docs/programmable/683385/17-0/command-queue-look-ahead-depth.html
https://www.intel.com/content/www/us/en/docs/programmable/683385/17-0/command-queue-look-ahead-depth.html
https://www.intel.com/content/www/us/en/docs/programmable/683385/17-0/command-queue-look-ahead-depth.html
https://download.semiconductor.samsung.com/resources/data-sheet/M378A1K43BB1-CPB00.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/M378A1K43BB1-CPB00.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

rowhammer-bug-to-gain.html. Accessed: 2025-07-24.
[31] Sonnet Technologies. 2013. Sonnet Tech Echo Express SE II. https://

www.sonnettech.com/product/legacyproducts/echoexpressse2.html
Accessed: 2025-08-18.

[32] StarTech.com. n.d.. Thunderbolt 3 PCIe Expansion Chas-
sis (TB31PCIEX16). https://www.startech.com/en-us/usb-hubs/
tb31pciex16. Accessed: 2025-06-16.

[33] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. 2021. Invisible
probe: Timing attacks with OCIe congestion side-channel. In IEEE SP.
322–338.

[34] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018. Throwhammer:
Rowhammer attacks over the network and defenses. In USENIX ATC.
213–226.

[35] Thunderbolt Technology. 2015. Thunderbolt 3 & USB-C – Does It
All. https://www.thunderbolttechnology.net/blog/thunderbolt-3-usb-
c-does-it-all Accessed: 2025-07-04.

[36] Ulf Frisk. [n. d.]. LightingZDMA. https://github.com/ufrisk/pcileech-
fpga/tree/master/ZDMA. Accessed: 2025-06-16.

[37] Zane Weissman, Thore Tiemann, Daniel Moghimi, Evan Custodio,
Thomas Eisenbarth, and Berk Sunar. 2019. Jackhammer: Efficient
Rowhammer on heterogeneous FPGA-CPU platforms. arXiv preprint
arXiv:1912.11523 (2019).

[38] WikiChip. 2021. Skylake (client) – Intel Microarchitecture. https://en.
wikichip.org/wiki/intel/microarchitectures/skylake_(client). Accessed:
2025-08-05.

[39] Wikipedia contributors. [n. d.]. Memory-mapped I/O and port-mapped
I/O. https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-
mapped_I/O. Accessed July 2025.

[40] Wikipedia contributors. 2025. Memory controller. https://en.wikipedia.
org/wiki/Memory_controller. Accessed: 2025-08-05.

[41] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
2016. One bit flips, one cloud flops:Cross-VM row hammer attacks
and privilege escalation. In USENIX Security. 19–35.

[42] Xilinx, Inc. 2012. 7 Series FPGAs Integrated Block for PCI Express
User Guide (UG477). https://docs.amd.com/v/u/en-US/ug477_7Series_
IntBlock_PCIe.

[43] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang,
Surya Nepal, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu.
2022. SoftTRR: Protect page tables against Rowhammer attacks using
software-only target row refresh. In USENIX ATC. 399–414.

[44] Zhi Zhang, Wei He, Yueqiang Cheng, Wenhao Wang, Yansong Gao,
Minghua Wang, Kang Li, Surya Nepal, and Yang Xiang. 2021. Bitmine:
An end-to-end tool for detecting Rowhammer vulnerability. IEEE
Transactions on Information Forensics and Security 16 (2021), 5167–
5181.

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://www.sonnettech.com/product/legacyproducts/echoexpressse2.html
https://www.sonnettech.com/product/legacyproducts/echoexpressse2.html
https://www.startech.com/en-us/usb-hubs/tb31pciex16
https://www.startech.com/en-us/usb-hubs/tb31pciex16
https://www.thunderbolttechnology.net/blog/thunderbolt-3-usb-c-does-it-all
https://www.thunderbolttechnology.net/blog/thunderbolt-3-usb-c-does-it-all
https://github.com/ufrisk/pcileech-fpga/tree/master/ZDMA
https://github.com/ufrisk/pcileech-fpga/tree/master/ZDMA
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O_and_port-mapped_I/O
https://en.wikipedia.org/wiki/Memory_controller
https://en.wikipedia.org/wiki/Memory_controller
https://docs.amd.com/v/u/en-US/ug477_7Series_IntBlock_PCIe
https://docs.amd.com/v/u/en-US/ug477_7Series_IntBlock_PCIe

	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Background
	2.1 PCI Express and Thunderbolt
	2.2 DRAM
	2.3 Rowhammer

	3 Hammering with Simple PCIe Devices
	3.1 Experimental Setup
	3.2 Bitflips in DDR3 via PCIe and Thunderbolt
	3.3 Attempting Bitflips in DDR4

	4 Memory Controller Reverse Engineering and Hammering DDR4 Targets
	4.1 PCIe Reordering
	4.2 Memory Controller Buffering Mechanisms
	4.3 RPQ and WPQ Reordering Properties
	4.4 Bitflips in DDR4 via PCIe
	4.5 Bitflips in DDR4 via Thunderbolt

	5 Evaluation
	5.1 Platforms
	5.2 Case Study with IOMMU enabled

	6 Limitations, Future Work and Countermeasures.
	6.1 Using Newer PCIe Generations.
	6.2 Attacks on Server-Grade CPUs
	6.3 Mitigations.

	7 Conclusions
	References

