
USB Proxy
Robbie Dumitru, Mark Beaumont, Bradley Hopkins, and Simon Windows

Defence Science and Technology Group
Adelaide, Australia

{robbie.dumitru,mark.beaumont,bradley.hopkins1,simon.windows}@defence.gov.au

ABSTRACT
Universal Serial Bus (USB) is the de facto standard for computer-
peripheral interconnect, however over the course of its develop-
ment little consideration has been given to security. This has led to
multiple examples demonstrating how USB can be leveraged to un-
dermine the security of computer systems across different layers of
its interface. User-friendly, holistic security solutions have proven
challenging to develop, especially given they must be retrofitted to
existing systems as add-on elements.

We have built a prototype USB Proxy device which brings to-
gether several protective functions for securing USB. The device
serves as a lightweightmediator for USB connections.Withminimal
cost to performance, it enforces canonicalisation of data transferred
between a device and host, allowing only known-good behaviour.
The connection separation prevents malicious behaviour, such as
bus-sniffing exploits. It also anonymises both ends of a connection,
providing confidentiality against profiling from either side.

ACM Reference Format:
Robbie Dumitru, Mark Beaumont, Bradley Hopkins, and Simon Windows.
2023. USB Proxy. In 2023 Australasian Computer Science Week (ACSW 2023),
January 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3579375.3579390

1 INTRODUCTION
USB is the most prevalent means of connecting computers with pe-
ripheral devices. Development of the USB standard has consistently
been driven toward ease-of-use and low-cost implementation which
has helped drive its popularity over the past two decades, however,
these characteristics are often at odds with secure design. By design,
the technology assumes mutual trust between the host (comput-
ing system) and connecting devices. In the absence of such trust,
USB presents a very compelling attack vector because of its lack
of inbuilt security features, the level of system access it can offer,
and its functional versatility. Many prior works have demonstrated
attacks on the USB ecosystem via compromised devices, such as
USB sticks masquerading as keyboards to send commands [23],
hubs on a device’s connection path monitoring and manipulat-
ing traffic [22], and even off-path devices monitoring [28, 31] and
manipulating [16] the traffic of other devices.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ACSW 2023, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0005-7/23/01. . . $15.00
https://doi.org/10.1145/3579375.3579390

With the USB Implementers Forum1 stating that “consumers
should only grant trusted sources with access to their USB de-
vices” [34], USB’s security model relies on limiting port access to
trusted devices rather than tried and tested techniques such as
encryption, authentication, and access control. This is insufficient
where critical systems are concerned, particularly given threats
posed by supply chain compromise, surreptitious device planting,
and social engineering approaches [3, 33].

Several protective measures have been proposed to enable safe
interaction with potentially untrustworthy components across a
USB connection, including firewall-style device authorisation poli-
cies, physical bus separation, and cryptographic overlay protocols.
Common shortcomings among many of these defence implementa-
tions is that they either severely impact performance, or they only
prevent certain attacks and at certain layers. Tian et al. [32] empha-
sise that many of the most effective attacks work across multiple
layers of the USB protocol stack, highlighting the need for holistic
security solutions.
Our Contribution. In this work we present a protective hard-
ware prototype device called the USB Proxy which interposes the
connection between a host and peripheral USB device. The Proxy
uniquely consolidates multiple defensive functions of device and
data filtering, interface canonicalisation, physical bus separation,
and double-blind anonymity. It facilitates trustworthy virtual USB
connections as an active mediator by establishing two separate out-
ward host- and device-side USB connections. Connection through
the Proxy incurs minimal performance costs when compared to a
direct connection. Only enumeration time is affected.

When connecting a device through the Proxy it will first deter-
mine, depending on the configured filter policy, whether to allow a
virtual connection to the host. Physical separation from the host bus
means the Proxy will prevent any exploits based on bus or traffic
sniffing and manipulation. This includes all known mechanisms of
host fingerprinting using devices. Furthermore, the Proxy will mask
the connecting device’s identity by presenting user-configured iden-
tifiers toward the host. This double-blind anonymity between host-
and device-side means the USB interface cannot be exploited to
profile either side in any intelligence gathering activities.

In this paper we discuss related work pertaining to USB security
(Section 2). We detail the architecture of the Proxy (Section 3), our
prototype implementation (Section 4), and its operation which we
evaluate (Section 5).

2 BACKGROUND
USB was first released in 1996 to simplify the use of peripherals that
hitherto required different interfaces for each device type. Aside
from reducing the number of port types computers would have
to ship with, the other major simplification it introduced was that
1The organisation responsible for development of the USB standard

https://doi.org/10.1145/3579375.3579390
https://doi.org/10.1145/3579375.3579390

peripherals would automatically enumerate (self-configure) upon
being plugged in, referred to as ‘plug-and-play’.

2.1 USB Basics
USB is a host-managed shared bus. The shared bus network is
structured in a tree topology with a host (computer) at the root,
hubs that branch off to extend the number of attachment points,
and devices at the leafs. All transactions are scheduled and initiated
by the host, one at a time. When a device connects to a host over
USB the first action is for the host to enumerate the device. During
enumeration the host requests the device to send its descriptor set.
This is self-reported and non-authenticated information which the
device provides. Based on the descriptors, the host identifies the
device and loads the appropriate software drivers.

2.2 USB-based Attacks
Given its prevalence among PCs, IoT devices, and other embedded
systems, USB is an appealing avenue of exploitation for malicious
actors seeking to compromise computer systems. USB’s lack of ac-
cess control mechanisms and encryption is particularly problematic
as it makes attack vectors simple to develop and effective, whereas
countermeasures are typically costly and complicated. Here we
review several classes of USB attacks and defences, for more com-
prehensive summaries see [25, 26, 29, 30, 32] and references therein.
Electrical Attacks. Commercially available devices like the USB
Killer [5] can permanently incapacitate host computers and devices
attached to them by carrying out power surge electrical attacks
when plugged in. Such devices are equipped with capacitors that
they charge up using the USB power supply, to then discharge a
destructive high voltage direct current over the USB data lines.
Host Exploits. This attack class is labelled as such because it
uses connection through regular USB devices as an attack vector
for exploiting vulnerabilities in host systems. Halderman et al. [20]
exploit the lingering persistence of RAMcontents after loss of power
by performing a ‘Cold-boot’ from a USB drive and dumping the
residual memory, recovering user login information and encryption
keys. Vulnerabilities like buffer overflows [1] in USB drivers can
facilitate the execution of malicious code on host systems. A large
body of work [13, 18, 19] is dedicated to fuzzing the USB driver
stack for vulnerabilities. Similarly, compromise of the driver update
procedure of an OS can enable registration of drivers containing
malicious executables on any system that runs the OS.
Device Masquerading. USB device firmware can be programmed
(or re-programmed) to emulate the operation of certain devices. A
popular exploit method uses seemingly innocuous devices, typically
USB sticks, to emulate HID (human interface device) keyboards [15,
17, 21, 23]. These emulators feed keystroke inputs to achieve certain
objectives such as establishing remote shells, accessing malicious
websites, overriding DNS settings [21], or data exfiltration [15].
Keystroke sequence payloads can be pre-loaded on-chip [23] or
remotely fed [17]. Devices programmed to emulate HIDs can also
deceive victim users once plugged in by functioning as what they
physically appear to be. For example, a USB stick can work as a
compound device which establishes both a mass storage and a HID
keyboard interface over the same USB connection. Alternatively, it

might initially connect just as mass storage before disconnecting
and reconnecting as a HID keyboard.
Bus Sniffing. USB is a host-managed shared bus whose traffic
is not encrypted. In USB (version 2.0 and older) all downstream
(host-to-device) transmissions are broadcast on the bus making it
possible for connected devices to monitor communication toward
adjacent devices [28]. [16] demonstrates that devices can listen to
downstream probes addressed to other devices and then inject up-
stream data on their behalf. Upstream transmissions are only meant
to reach the host, however these signals have been demonstrated
to leak between ports [31] due to crosstalk leakage effects.

2.3 Defences
A consequence of the USB standard being geared towards low-
cost implementation is that the resultant technology is not par-
ticularly robust. Electrical attacks and upstream crosstalk leakage
can be mitigated by electrical isolation of USB ports, but this is
a costly measure. The trade-off between security and usability is
well-exemplified by USB. Angel et al. [12] implement encryption
and authentication over USB at an 80% cost to performance by mea-
sure of throughput. Device authorisation policies [6, 10, 27] can be
used to allow or block interaction with certain devices. Although,
in most cases these implementations fingerprint devices based on
unauthenticated device-provided descriptors.
Commercial Protective Solutions. Physical USB port block-
ers [7, 8] are commercially available tools for locking down USB
computer ports and making them unusable. HighSecLabs’ suite of
USB protection device products [4] features mechanical port locks
and USB filters. One of the two filters advertised blocks all USB
traffic except for keyboards and mice, the other allows connections
based on device descriptor fields. The USB Sentry [9] is a secure
USB hub used in a similar vein by blocking all other ports. It pre-
vents some protocol violations, bus sniffing, and tricks commonly
used in device emulation exploits. Globotron produce the USG v1.0
Hardware Firewall [11] and the Armadillo Hardware Firewall USB
2.0 [2]. Both firewalls only enable connection of mass storage, mice
and keyboard devices, all with limited functionality. They detect
and block malicious input from mice and keyboards, as would be
provided by HID emulators, based on input types and timing.

3 ARCHITECTURE
Our proposed USB Proxy comprises two distinct USB entities: a
Proxy-device (host-facing) and Proxy-host (device-facing). Data is
selectively transferred between the two to establish a virtual USB
connection between an external host and an external peripheral.
The Proxy has full control over the connection.
Operation. Power is supplied to the USB Proxy from the exter-
nal host (e.g., host PC). Upon connection to an external device
(e.g., keyboard), the Proxy-host enumerates the device, obtaining
its descriptor set and bringing it into a connected state (only with
respect to the Proxy-host). From the descriptor set, the Proxy de-
termines if the device is authorised for connection. If the device is
not authorised no further action is taken i.e., no connection to the
external host is established, therefore no enumeration to the host
occurs. The Proxy can be configured to maintain a combination
of explicitly trusted or non-trusted descriptor fields by which to

2

filter devices that are enabled a connection toward the host, thereby
implementing its own device authorisation policy.

Should the enumerated device be authorised, then on its behalf
the Proxy-device will emulate an equivalent generic device of the
same type toward the external host. From this the host establishes
a connection with the Proxy-device across interfaces defined by the
descriptor set it provides. Certain fields in the generic descriptor set
are modifiable in configuration, namely the string descriptors and
idVendor, idProduct, and bcdDevice byte pairs. Operating systems
typically use the globally unique combinations of idVendor and
idProduct (often referred to as VID and PID, respectively) fields to
identify USB devices. bcdDevice is the device version number. String
descriptors are optional human readable descriptors.

Virtual connection with the external device is facilitated by pass-
ing data between Proxy-host and Proxy-device. By emulating a
generic device on the real device’s behalf, the Proxy canonicalises
the data flows between external host and device because it strictly
defines the interfaces established. Data in transit can be filtered or
altered according to configured policy. Capture and storage of the
data is also possible for post-use analysis.

4 PROTOTYPE
We have developed a prototype implementation of the USB Proxy
based on a programmable embeddedUSB controller (FTDI VNC2 [14]),
that has both a host USB interface and a separate device USB in-
terface. The controller is attached to two USB connectors, LEDs, a
push button switch, and an EEPROM. See Figure 1. All components
are housed on a board roughly the size of a thumb drive.

Figure 1: USB Proxy prototype on custom board

Figure 2 illustrates the data flows within the Proxy prototype. The
connections toward external entities are at the USB connectors
represented by PC and Mouse/Keyboard labels.

The FTDI VNC2 firmware was developed with separate software
modules that control the host and device interfaces. Enumeration
and other control exchanges are isolated to occur separately with
both external entities. The host interface software (proxy-host) con-
nects to peripheral devices (e.g., keyboard) that are attached. The
device software (Proxy-device) establishes a connection, as a pe-
ripheral, to a host computer. Additional software then implements
the actual proxy functionality, passing only data between the two
interfaces through use of a shared memory.

The initial prototype supports keyboard and mouse peripheral
devices. When a peripheral device is plugged in, only if it is a key-
board or mouse, it is enumerated by the Proxy-host and a connection
is established. Then, the Proxy-device firmware enumerates with

the host, and only does so using the boot protocol interface and
presenting generic mouse or keyboard descriptor sets, depending
on which type of device has been plugged in.

Mouse or keyboard input packets from the Proxy-device are the
only data input that reach the host, as enforced by enumeration
establishing an interface with the host which expects only this type
of input. A size check is performed on input data sent to the host.
With keyboards, output report bytes that convey PC state (Caps
lock, Num lock, etc.) used for lighting up LEDs are sent as control
transfers. This constitutes the only output data transferred.
Configuration. The device has two operational modes and by
default is programmed to work as a USB Proxy. However, if the push
button ’CONFIG’ switch is pressed upon plugging the prototype
into a host, the device powers on in configuration mode. In this
mode it connects to the host as a serial device over USB.

Using this serial interface, host-based software can configure
the Proxy device. For example, values for the modifiable descriptor
fields (IDs, Strings) can be written to the Proxy and stored on
its EEPROM for retention between power on, power off cycles.
Thereon, in normal operation the Proxy assumes and presents the
most recently configured identifying descriptors toward the host.

5 EVALUATION
To be effective, a USB Proxy must correctly enforce the required
security functionality, all while facilitating a virtual USB connection
with a negligible effect on performance. We validate this functional-
ity by testing the prototype implementation described in Section 4.
Device Filtering. When plugging in non-authorised device types
there is no interaction with the host. The Proxy handles compound
devices which contain one of the allowable interfaces, enabling
communication only through that interface. We verified that the
entire USB descriptor set seen by hosts was consistent with only
the Proxy supplied generic and configured device descriptors.
Interface Canonicalisation. Due to plug-and-play, there is poten-
tial for large discrepancy between the interface a device self-reports
and what type of device the user thinks is plugged in. The Proxy
prototype was verified to always report in the same boot protocol
format for each of either keyboard or mouse devices - regardless of
the underlying report structure of the peripheral plugged in.
Physical Separation. Downstream traffic is not visible toward
devices connected through the Proxy that are capable of bus sniffing
due to the separation of physical bus interfaces. Electrical isolation
was outside of scope therefore our prototype may yet leave the USB
connection susceptible to electrical attacks. Further measures such
as current limiting or voltage spike clamping could be implemented
as a means of handling this.
Anonymity. The Proxy-device presented to the host PC as a generic
device, with USB IDs and strings that were unrelated to the actual
keyboard or mouse plugged in - masking the identity of the con-
necting device. Probing from the host returned no identifying in-
formation from the actual peripheral device. Likewise the external
peripheral device connected to the Proxy-host received no identify-
ing information about the host PC (in characterisable enumeration
request timings [24]) - masking host behaviour and identity.
Data Filtering. The Proxy performs no operations on the trans-
ferred data, therefore there are no measures preventing malformed

3

Figure 2: USB Proxy Prototype Data Flows

data being transferred to the host, however this data is only pro-
cessed as mouse and keyboard input reports. Vulnerabilities in the
host’s mouse and keyboard drivers would still be exposed through
use of the Proxy, with the exception of buffer overflow vulnerabili-
ties since a size check is performed on the transferred data. Support
for data monitoring can be incorporated.
Performance. The Proxy platform is capable of communicating
at the same speeds as devices which it emulates, as such, no loss in
bandwidth is incurred. There is a slightly increased delay due to in-
put processing, however this delay is unnoticeable for human users.
More significantly, due to the dual enumeration and authorisation
checks, enumeration time is doubled.

6 CONCLUSION
A prototype USB Proxy was implemented that successfully imple-
ments the desired security functions of device/data filtering and
physical separation as found among commercial solutions, along
with additional security functions enforcing interface canonicalisa-
tion and anonymity. This proxy can relatively cheaply and simply
increase security when using USB peripherals. The Proxy provides
a configurable platform for mediating security for any type of USB
peripheral. Future work includes expanding the proxy functionality
to support other USB protocols, and implementing real-time data
filtering techniques.

REFERENCES
[1] 2009. CVE-2009-4067: . https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2009-4067
[2] 2022. Armadillo Hardware Firewall USB 2.0. https://globotron.nz/products/

armadillo-hardware-usb-firewall
[3] 2022. Dead Drops. https://deaddrops.com/
[4] 2022. eLock USB Lockdown. http://www.highseclabs.com/products/?pid=92
[5] 2022. USB Kill. https://usbkill.com/
[6] 2022. USB-Lock-RP. https://www.usb-lock-rp.com/
[7] 2022. USB Physical Security. https://www.smartkeeperworld.com/#/usb-

physicalsecurity
[8] 2022. USB Port Blocker. https://www.kensington.com/p/products/data-

protection/usb-port-lock-security/usb-port-blocker-cable-guard-horizontal/
[9] 2022. USB Sentry. https://www.atcorp.com/products/usbsentry/
[10] 2022. USBGuard. https://usbguard.github.io/
[11] 2022. USG v1.0 Hardware Firewall. https://globotron.nz/products/usg-v1-0-

hardware-usb-firewall

[12] Sebastian Angel et al. 2016. Defending against Malicious Peripherals with Cinch.
In USENIX Security Symposium 2016.

[13] Sergey Bratus. 2012. Perimeter-Crossing Buses : a New Attack Surface for
Embedded Systems. In WESS 2012.

[14] FTDI Chip. 2022. VNC2 - Vinculum-II Programmable USB 2.0 Host. https:
//www.ftdichip.com/old2020/Products/ICs/VNC2.htm

[15] John Clark, Sylvain Leblanc, and Scott Knight. 2011. Compromise through USB-
based Hardware Trojan Horse device. Future Generation Computer Systems 27
(May 2011), 555–563.

[16] Robert Dumitru, Daniel Genkin, Andrew Wabnitz, and Yuval Yarom. 2023. The
Impostor Among US(B): Off-Path Injection Attacks on USB Communications. In
USENIX Security Symposium 2023.

[17] Monta Elkins. 2018. Universal RF USB Keyboard Emulation Device UR-
FUKED. https://defcon.org/images/defcon-18/dc-18-presentations/Elkins/
DEFCON-18-Elkins-Universal-RF-Keyboard.pdf

[18] Travis Goodspeed. 2022. Python USB device emulation. http://goodfet.
sourceforge.net/hardware/facedancer21/

[19] Google. 2019. Found Linux kernel USB bugs. https://github.com/google/
syzkaller/blob/master/docs/linux/found_bugs_usb.md

[20] J. Alex Halderman et al. 2009. Lest We Remember: Cold-Boot Attacks on Encryp-
tion Keys. 52, 5 (May 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[21] Samy Kamkar. 2022. USBdriveby. http://samy.pl/usbdriveby/
[22] David Kierznowski. 2016. BadUSB 2.0: USB man in the middle attacks. Masters

Thesis. Royal Holloway University of London.
[23] Darren Kitchen. 2022. USB Rubber Ducky Payloads. https://github.com/hak5/

usbrubberducky-payloads
[24] Lara Letaw, Joe Pletcher, and Kevin Butler. 2011. Host Identification via USB

Fingerprinting. SADFE (05 2011).
[25] Hao Liu, Riccardo Spolaor, Federico Turrin, Riccardo Bonafede, and Mauro Conti.

2021. USB powered devices: A survey of side-channel threats and countermea-
sures. High-Confidence Computing (2021).

[26] Mark Mamchenko and Alexey Sabanov. 2019. Exploring the Taxonomy of USB-
Based Attacks. In MLSD 2019.

[27] HessamMohammadmoradi and Omprakash Gnawali. 2018. MakingWhitelisting-
Based Defense Work Against BadUSB. In ICSDE 2018.

[28] Matthias Neugschwandtner, Anton Beitler, and Anil Kurmus. 2016. A Transparent
Defense Against USB Eavesdropping Attacks. In EUROSEC 2016.

[29] Nir Nissim, Ran Yahalom, and Yuval Elovici. 2017. USB-based attacks. Comput.
Secur. 70 (2017), 675–688.

[30] Dung Vu Pham, Ali Syed, and Malka N. Halgamuge. 2011. Universal serial bus
based software attacks and protection solutions. Digit. Investig. 7, 3–4 (2011),
172–184.

[31] Yang Su, Daniel Genkin, Damith Chinthana Ranasinghe, and Yuval Yarom. 2017.
USB Snooping Made Easy: Crosstalk Leakage Attacks on USB Hubs. In USENIX
Security Symposium 2017.

[32] Dave (Jing) Tian et al. 2018. SoK: “Plug & Pray” Today - Understanding USB
Insecurity in Versions 1 Through C. In IEEE Security and Privacy 2018.

[33] Matthew Tischer et al. 2016. Users really do plug in usb drives they find. In IEEE
Security and Privacy 2016.

[34] USB Implementers Forum. 2014. USB-IF Statement regarding USB security.
https://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf.

4

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4067
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4067
https://globotron.nz/products/armadillo-hardware-usb-firewall
https://globotron.nz/products/armadillo-hardware-usb-firewall
https://deaddrops.com/
http://www.highseclabs.com/products/?pid=92
https://usbkill.com/
https://www.usb-lock-rp.com/
https://www.smartkeeperworld.com/#/usb-physicalsecurity
https://www.smartkeeperworld.com/#/usb-physicalsecurity
https://www.kensington.com/p/products/data-protection/usb-port-lock-security/usb-port-blocker-cable-guard-horizontal/
https://www.kensington.com/p/products/data-protection/usb-port-lock-security/usb-port-blocker-cable-guard-horizontal/
https://www.atcorp.com/products/usbsentry/
https://usbguard.github.io/
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://globotron.nz/products/usg-v1-0-hardware-usb-firewall
https://www.ftdichip.com/old2020/Products/ICs/VNC2.htm
https://www.ftdichip.com/old2020/Products/ICs/VNC2.htm
https://defcon.org/images/defcon-18/dc-18-presentations/Elkins/DEFCON-18-Elkins-Universal-RF-Keyboard.pdf
https://defcon.org/images/defcon-18/dc-18-presentations/Elkins/DEFCON-18-Elkins-Universal-RF-Keyboard.pdf
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs_usb.md
https://doi.org/10.1145/1506409.1506429
http://samy.pl/usbdriveby/
https://github.com/hak5/usbrubberducky-payloads
https://github.com/hak5/usbrubberducky-payloads
https://www.usb.org/press/USB-IF_Statement_on_USB_Security_FINAL.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 USB Basics
	2.2 USB-based Attacks
	2.3 Defences

	3 Architecture
	4 Prototype
	5 Evaluation
	6 Conclusion
	References

